Skip to main content
Erschienen in:

22.12.2022

Fire and Smoke Detection Using Capsule Network

verfasst von: Rafaqat Alam Khan, Ali Hussain, Usama Ijaz Bajwa, Rana Hammad Raza, Muhammad Waqas Anwar

Erschienen in: Fire Technology | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Video surveillance and image processing approaches are widely used nowadays for security and safety purposes. Such systems are also effective for smoke and fire detection and are one of the safety techniques to eliminate the drastic situation in their early stage. Detection of fire and smoke incidents in their early stages is of utmost importance. The conventional detectors having several limitations are now being replaced with intelligent video-based sensors. Training an efficient fire and smoke detection system using smart video-based detectors required a massive amount of annotated data describing unique fire patterns. This work presents a real-time video-based fire and smoke detection in its early stages while suppressing false alarms due to varying illumination (i.e., weather conditions), burning patterns, fog, cloud, and distinctive characteristics of fire and smoke, etc. The model is trained using Capsule Network-based architecture on different fire and smoke patterns obtained from publicly available datasets. Experimental results showed that the proposed architecture improved significantly in terms of accuracy, final model size, and false-positive rate on both binary and multiclass classification of fire and smoke compared with various state-of-the-art studies. These results validate the proposed architecture's generalizability and suitability for intelligent video-based fire and smoke detection using CCTV cameras.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Ojo JA, Oladosu JA (2014) Video-based smoke detection algorithms: a chronological survey. Comput Eng Intell Syst 5:38–50 Ojo JA, Oladosu JA (2014) Video-based smoke detection algorithms: a chronological survey. Comput Eng Intell Syst 5:38–50
4.
Zurück zum Zitat Toulouse T, Rossi L, Campana A, Celik T, Akhloufi MA (2017) Computer vision for wildfire research: an evolving image dataset for processing and analysis. Fire Saf J 92:188–194CrossRef Toulouse T, Rossi L, Campana A, Celik T, Akhloufi MA (2017) Computer vision for wildfire research: an evolving image dataset for processing and analysis. Fire Saf J 92:188–194CrossRef
5.
Zurück zum Zitat Avgerinakis K, Briassouli A, Kompatsiaris I (2012) Smoke detection using temporal hoghof descriptors and energy colour statistics from video. In: International workshop on multi-sensor systems and networks for fire detection and management, pp 3–6 Avgerinakis K, Briassouli A, Kompatsiaris I (2012) Smoke detection using temporal hoghof descriptors and energy colour statistics from video. In: International workshop on multi-sensor systems and networks for fire detection and management, pp 3–6
6.
Zurück zum Zitat Töreyin BU, Dedeoğlu Y, Çetin AE (2005) Wavelet based real-time smoke detection in video. In: 2005 13th European signal processing conference, pp 1–4 Töreyin BU, Dedeoğlu Y, Çetin AE (2005) Wavelet based real-time smoke detection in video. In: 2005 13th European signal processing conference, pp 1–4
7.
Zurück zum Zitat Healey G, Slater D, Lin T, Drda B, Goedeke AD (1993) A system for real-time fire detection. In: Proceedings of IEEE conference on computer vision and pattern recognition. IEEE Computing Society Press. pp 605–606 Healey G, Slater D, Lin T, Drda B, Goedeke AD (1993) A system for real-time fire detection. In: Proceedings of IEEE conference on computer vision and pattern recognition. IEEE Computing Society Press. pp 605–606
8.
Zurück zum Zitat Mohammed TA, Mohammed AA (2017) Real time video surveillance system for fire and smoke detection based on wavelet transform. J Zankoy Sulaimani A 19:229–238CrossRef Mohammed TA, Mohammed AA (2017) Real time video surveillance system for fire and smoke detection based on wavelet transform. J Zankoy Sulaimani A 19:229–238CrossRef
9.
Zurück zum Zitat Toreyin BU, Cetin AE (2007) Online detection of fire in video. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE, p 1–5 Toreyin BU, Cetin AE (2007) Online detection of fire in video. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE, p 1–5
10.
Zurück zum Zitat Zhang Q, Xu J, Xu L, Guo H (2016) Deep convolutional neural networks for forest fire detection. In: Proceedings of the 2016 international forum on management, education and information technology application. Atlantis Press, Paris. pp 568–575 Zhang Q, Xu J, Xu L, Guo H (2016) Deep convolutional neural networks for forest fire detection. In: Proceedings of the 2016 international forum on management, education and information technology application. Atlantis Press, Paris. pp 568–575
11.
Zurück zum Zitat Muhammad K, Ahmad J, Lv Z, Bellavista P, Yang P, Baik SW (2019) Efficient deep CNN-based fire detection and localization in video surveillance applications. IEEE Trans Syst Man Cybern 49:1419–1434CrossRef Muhammad K, Ahmad J, Lv Z, Bellavista P, Yang P, Baik SW (2019) Efficient deep CNN-based fire detection and localization in video surveillance applications. IEEE Trans Syst Man Cybern 49:1419–1434CrossRef
12.
Zurück zum Zitat Tripathi A, Swarup S (2017) Visual smoke detection. Springer, Cham, pp 1–14 Tripathi A, Swarup S (2017) Visual smoke detection. Springer, Cham, pp 1–14
18.
Zurück zum Zitat Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A (2020) COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit Lett 138:638–643CrossRef Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A (2020) COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit Lett 138:638–643CrossRef
20.
Zurück zum Zitat Hinton G, Sabour S, Frosst N. MATRIX CAPSULES WITH EM ROUTING Hinton G, Sabour S, Frosst N. MATRIX CAPSULES WITH EM ROUTING
26.
Zurück zum Zitat Jadon A, Varshney A, Ansari MS (2020) Low-complexity high-performance deep learning model for real-time low-cost embedded fire detection systems. Proc Comput Sci 171:418–426CrossRef Jadon A, Varshney A, Ansari MS (2020) Low-complexity high-performance deep learning model for real-time low-cost embedded fire detection systems. Proc Comput Sci 171:418–426CrossRef
32.
Zurück zum Zitat Khudayberdiev O, Butt MH (2020) Fire detection in surveillance videos using a combination with PCA and CNN. Acad J Comput Inf Sci 3:3 Khudayberdiev O, Butt MH (2020) Fire detection in surveillance videos using a combination with PCA and CNN. Acad J Comput Inf Sci 3:3
33.
Zurück zum Zitat Avula SB, Badri SJ, Reddy G (2020) A novel forest fire detection system using fuzzy entropy optimized thresholding and STN-based CNN. In: 2020 international conference on COMmunication Systems & NETworkS (COMSNETS) 2020 Jan 7, pp 750–755. IEEE Avula SB, Badri SJ, Reddy G (2020) A novel forest fire detection system using fuzzy entropy optimized thresholding and STN-based CNN. In: 2020 international conference on COMmunication Systems & NETworkS (COMSNETS) 2020 Jan 7, pp 750–755. IEEE
Metadaten
Titel
Fire and Smoke Detection Using Capsule Network
verfasst von
Rafaqat Alam Khan
Ali Hussain
Usama Ijaz Bajwa
Rana Hammad Raza
Muhammad Waqas Anwar
Publikationsdatum
22.12.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01352-w

Weitere Artikel der Ausgabe 2/2023

Fire Technology 2/2023 Zur Ausgabe