Skip to main content
Erschienen in:

12.01.2023

Fire Fragility Curves for Industrial Steel Pipe-Racks Integrating Demand and Capacity Uncertainties

verfasst von: Luca Possidente, Jérôme Randaxhe, Nicola Tondini

Erschienen in: Fire Technology | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper aims at deriving fire fragility curves for a prototype steel pipe-rack in an industrial plant subjected to localised fires. In particular, starting from a reference case study, uncertainties related to the structural capacity and the size of the localised fires caused by a hole in a tank or a hole in a pipe are included in the analyses. Thus, the influence of uncertainties in the derivation of the fragility functions was highlighted by comparing four sets of analyses in which both demand and capacity uncertainties were progressively introduced. Moreover, alongside the cloud analysis (CA), the suitability of the multiple stripe analysis (MSA) to build relevant probabilistic fire demand models was assessed. Fire fragility curves were derived by considering the interstorey drift ratio (ISDR) as engineering demand parameter (EDP) and by assessing different relevant intensity measures (IMs) that represent the severity of localised fires. It was found that by introducing uncertainties in the steel yield strength, lower probabilities to exceed the life safety and the near collapse limit states with respect to the reference case study were observed. Moreover, the inclusion of further uncertainties, described with continuous physically-based probability functions of the size of the fire diameter, affected the probabilistic models by lowering the probability of exceedance. These functions provide a more realistic description of the fire scenario, enabling a better representation of the structural vulnerability. For this case study, the CA exhibited better suitability for the derivation of fire fragility curves than the MSA. All the analysis results are thoroughly discussed in the paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat European Comitee for Standardisation (2002) Eurocode 1 Actions on structures—Part 1–2: general actions—actions on structures exposed to fire European Comitee for Standardisation (2002) Eurocode 1 Actions on structures—Part 1–2: general actions—actions on structures exposed to fire
2.
Zurück zum Zitat Franssen JM, Gernay T (2017) Modeling structures in fire with SAFIR®: theoretical background and capabilities. J Struct Fire Eng 8(3):300–323CrossRef Franssen JM, Gernay T (2017) Modeling structures in fire with SAFIR®: theoretical background and capabilities. J Struct Fire Eng 8(3):300–323CrossRef
4.
Zurück zum Zitat ABAQUS (2014a) ABAQUS version 6.14, User’s manual. Dassault Systèmes, Vélizy-Villacoublay ABAQUS (2014a) ABAQUS version 6.14, User’s manual. Dassault Systèmes, Vélizy-Villacoublay
5.
Zurück zum Zitat ANSYS Inc (2016) ANSYS versrefboion 17.0, User’s manual. ANSYS, Canonsburg ANSYS Inc (2016) ANSYS versrefboion 17.0, User’s manual. ANSYS, Canonsburg
6.
Zurück zum Zitat DIANA FEA BV (2016) DIANA version 10.1, User’s manual. DIANA FEA BV, Delft DIANA FEA BV (2016) DIANA version 10.1, User’s manual. DIANA FEA BV, Delft
7.
Zurück zum Zitat Possidente L, Tondini N, Battini J-M (2019) Branch-switching procedure for post-buckling analyses of thin-walled steel members in fire. Thin-Walled Struct 136:90–98CrossRef Possidente L, Tondini N, Battini J-M (2019) Branch-switching procedure for post-buckling analyses of thin-walled steel members in fire. Thin-Walled Struct 136:90–98CrossRef
11.
Zurück zum Zitat Possidente L, Tondini N, Battini J-M (2020) Torsional and flexural-torsional buckling of compressed steel members in fire. J Constr Steel Res 171:106130CrossRef Possidente L, Tondini N, Battini J-M (2020) Torsional and flexural-torsional buckling of compressed steel members in fire. J Constr Steel Res 171:106130CrossRef
14.
Zurück zum Zitat Bilotta A, de Silva D, Nigro E (2016) General approach for the assessment of the fire vulnerability of existing steel and composite steel concrete structures. J Build Eng 8:198–207CrossRef Bilotta A, de Silva D, Nigro E (2016) General approach for the assessment of the fire vulnerability of existing steel and composite steel concrete structures. J Build Eng 8:198–207CrossRef
16.
Zurück zum Zitat Shome N, Cornell CA, Bazzurro P, Carballo JE (1998) Earthquakes, records, and nonlinear responses. Earthq Spectra 14:469–500CrossRef Shome N, Cornell CA, Bazzurro P, Carballo JE (1998) Earthquakes, records, and nonlinear responses. Earthq Spectra 14:469–500CrossRef
17.
Zurück zum Zitat Cornell CA, Jalayer F, Hamburger RO, Foutch DA (2002) Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. J Struct Eng 128:526–533CrossRef Cornell CA, Jalayer F, Hamburger RO, Foutch DA (2002) Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. J Struct Eng 128:526–533CrossRef
18.
Zurück zum Zitat Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq Spectra 31:579–599CrossRef Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq Spectra 31:579–599CrossRef
19.
Zurück zum Zitat Luco N, Cornell CA (2007) Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthq Spectra 23(2):357–392CrossRef Luco N, Cornell CA (2007) Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthq Spectra 23(2):357–392CrossRef
20.
Zurück zum Zitat Ebrahimian H, Jalayer F, Lucchini A, Mollaioli F, Manfredi G (2015) Preliminary ranking of alternative scalar and vector intensity measures of ground shaking. Bull Earthq Eng 13:2805–2840CrossRef Ebrahimian H, Jalayer F, Lucchini A, Mollaioli F, Manfredi G (2015) Preliminary ranking of alternative scalar and vector intensity measures of ground shaking. Bull Earthq Eng 13:2805–2840CrossRef
21.
Zurück zum Zitat Nigro E, Bilotta A, Asprone D, Jalaver F, Prota A, Manfredi G (2014) Probabilistic approach for failure assessment of steel structures in fire by means of plastic limit analysis. Fire Saf J 68:16–29CrossRef Nigro E, Bilotta A, Asprone D, Jalaver F, Prota A, Manfredi G (2014) Probabilistic approach for failure assessment of steel structures in fire by means of plastic limit analysis. Fire Saf J 68:16–29CrossRef
22.
Zurück zum Zitat Gernay T, Khorasani NE, Garlock M (2016) Fire fragility curves for steel buildings in a community context: a methodology. Eng Struct 113:259–276CrossRef Gernay T, Khorasani NE, Garlock M (2016) Fire fragility curves for steel buildings in a community context: a methodology. Eng Struct 113:259–276CrossRef
23.
Zurück zum Zitat Gernay T, Khorasani NE, Garlock M (2019) Fire fragility functions for steel frame buildings: sensitivity analysis and reliability framework. Fire Technol 55(4):1175–1210CrossRef Gernay T, Khorasani NE, Garlock M (2019) Fire fragility functions for steel frame buildings: sensitivity analysis and reliability framework. Fire Technol 55(4):1175–1210CrossRef
24.
Zurück zum Zitat Lange D, Devaney S, Usmani A (2014) An application of the PEER performance based earthquake engineering framework to structures in fire. Eng Struct 66:100–115CrossRef Lange D, Devaney S, Usmani A (2014) An application of the PEER performance based earthquake engineering framework to structures in fire. Eng Struct 66:100–115CrossRef
25.
Zurück zum Zitat Shrivastava M, Abu AK, Dhakal RP, Moss PJ (2019) Severity measures and stripe analysis for probabilistic structural fire engineering. Fire Technol 55(4):1147–1173CrossRef Shrivastava M, Abu AK, Dhakal RP, Moss PJ (2019) Severity measures and stripe analysis for probabilistic structural fire engineering. Fire Technol 55(4):1147–1173CrossRef
26.
Zurück zum Zitat Cornell CA, Krawinkler H (2003) Progress and challenges in seismic performance assessment. Peer Cent News 3(2):1–3 Cornell CA, Krawinkler H (2003) Progress and challenges in seismic performance assessment. Peer Cent News 3(2):1–3
27.
Zurück zum Zitat Campedel M (2008) Analysis of major industrial accidents triggered by natural events reported in the principal available chemical accident databases. University of Bologna, European Commission Joint Research Centre Institute for the Protection and Security of the Citizen. Campedel M (2008) Analysis of major industrial accidents triggered by natural events reported in the principal available chemical accident databases. University of Bologna, European Commission Joint Research Centre Institute for the Protection and Security of the Citizen.
28.
Zurück zum Zitat Paolacci F (2010) Structural safety of industrial steel tanks; pressure vessels and piping—basic seismic structural design of a typical piping system. University of RomaTre, Rome Paolacci F (2010) Structural safety of industrial steel tanks; pressure vessels and piping—basic seismic structural design of a typical piping system. University of RomaTre, Rome
29.
Zurück zum Zitat Bursi O, Paolacci F, Reza MS, Alessandri S, Tondini N (2010) Seismic assessment of petrochemical piping systems using a performance-based approach. J Press Vessel Technol 138:031801–02CrossRef Bursi O, Paolacci F, Reza MS, Alessandri S, Tondini N (2010) Seismic assessment of petrochemical piping systems using a performance-based approach. J Press Vessel Technol 138:031801–02CrossRef
30.
Zurück zum Zitat Paolacci F, Bursi O, Reza MdS, Kumar A, Gresnigt AM (2013) Main issues on the seismic design of industrial piping systems and components. In: ASME 2013 pressure vessels & piping division conference, pp 1–10 Paolacci F, Bursi O, Reza MdS, Kumar A, Gresnigt AM (2013) Main issues on the seismic design of industrial piping systems and components. In: ASME 2013 pressure vessels & piping division conference, pp 1–10
31.
Zurück zum Zitat Bursi O, Paolacci F, Reza MS (2015) Performance-based analysis of coupled support structures and piping systems. In: ASME 2015 pressure vessels & piping division conference, July Bursi O, Paolacci F, Reza MS (2015) Performance-based analysis of coupled support structures and piping systems. In: ASME 2015 pressure vessels & piping division conference, July
32.
Zurück zum Zitat Bernier C, Padgett JE (2019) Fragility and risk assessment of aboveground storage tanks subjected to concurrent surge, wave, and wind loads. Reliab Eng Syst Saf 191:106571CrossRef Bernier C, Padgett JE (2019) Fragility and risk assessment of aboveground storage tanks subjected to concurrent surge, wave, and wind loads. Reliab Eng Syst Saf 191:106571CrossRef
33.
Zurück zum Zitat Uehara V (1991) Fire safety assessments in petrochemical plants. In: Fire safety science—third international symposium, pp 83–96 Uehara V (1991) Fire safety assessments in petrochemical plants. In: Fire safety science—third international symposium, pp 83–96
34.
Zurück zum Zitat Chang JI, Lin C (2005) A study of storage tank accidents. J Loss Prev Process Ind 19:51–59CrossRef Chang JI, Lin C (2005) A study of storage tank accidents. J Loss Prev Process Ind 19:51–59CrossRef
35.
Zurück zum Zitat Zheng B, Chen G (2011) Storage tank fire accidents. Process Saf Prog 30(3):291–293CrossRef Zheng B, Chen G (2011) Storage tank fire accidents. Process Saf Prog 30(3):291–293CrossRef
36.
Zurück zum Zitat Shu C, Chong C (2009) Applications of 3D QRA technique to the fire/explosion simulation and hazard mitigation within a naphtha-cracking plant. J Loss Prev Process Ind 22(4):506–515CrossRef Shu C, Chong C (2009) Applications of 3D QRA technique to the fire/explosion simulation and hazard mitigation within a naphtha-cracking plant. J Loss Prev Process Ind 22(4):506–515CrossRef
37.
Zurück zum Zitat Committee for the prevention of disasters by hazardous materials (2005) Methods for the calculation of physical effects due to releases of hazardous materials—Yellow Book. Gevaarlijke Stoffen, The Hague Committee for the prevention of disasters by hazardous materials (2005) Methods for the calculation of physical effects due to releases of hazardous materials—Yellow Book. Gevaarlijke Stoffen, The Hague
38.
Zurück zum Zitat Vílchez JA, Espejo V, Casal J (2011) Generic event trees and probabilities for the release of different types of hazardous materials. J Loss Prev Process Ind 24(3):281–287CrossRef Vílchez JA, Espejo V, Casal J (2011) Generic event trees and probabilities for the release of different types of hazardous materials. J Loss Prev Process Ind 24(3):281–287CrossRef
39.
Zurück zum Zitat Moosemiller M (2011) Development of algorithms for predicting ignition probabilities and explosion frequencies. J Loss Prev Process Ind 24(3):259–265CrossRef Moosemiller M (2011) Development of algorithms for predicting ignition probabilities and explosion frequencies. J Loss Prev Process Ind 24(3):259–265CrossRef
40.
Zurück zum Zitat Gottuk DT, White DA (2016) Liquid fuel fires. SFPE Handb Fire Prot Eng 12:2552–2590CrossRef Gottuk DT, White DA (2016) Liquid fuel fires. SFPE Handb Fire Prot Eng 12:2552–2590CrossRef
41.
Zurück zum Zitat Elhami Khorasani N, Gardoni P, Garlock M (2015) Probabilistic fire analysis: material models and evaluation of steel structural members. J Struct Eng ASCE 141(12):04015050CrossRef Elhami Khorasani N, Gardoni P, Garlock M (2015) Probabilistic fire analysis: material models and evaluation of steel structural members. J Struct Eng ASCE 141(12):04015050CrossRef
42.
Zurück zum Zitat Qureshi R, Ni S, Elhami Khorasani N, Van Coile R, Hopkin D, Gernay T (2020) Probabilistic models for temperature-dependent strength of steel and concrete. J Struct Eng ASCE 146(6):04020102CrossRef Qureshi R, Ni S, Elhami Khorasani N, Van Coile R, Hopkin D, Gernay T (2020) Probabilistic models for temperature-dependent strength of steel and concrete. J Struct Eng ASCE 146(6):04020102CrossRef
43.
Zurück zum Zitat Randaxhe J, Popa N, Tondini N (2021) Probabilistic fire demand model for steel pipe-racks exposed to localised fires. Eng Struct 226:111310CrossRef Randaxhe J, Popa N, Tondini N (2021) Probabilistic fire demand model for steel pipe-racks exposed to localised fires. Eng Struct 226:111310CrossRef
44.
Zurück zum Zitat Thomas PH (1963) The size of flames form natural fires. In: Symposium international on combustion, vol 9, pp 844–59 Thomas PH (1963) The size of flames form natural fires. In: Symposium international on combustion, vol 9, pp 844–59
45.
Zurück zum Zitat Mudan KS (1984) Thermal radiation hazards from hydrocarbon pool fires. Prog Energy Combust Sci 10:59–80CrossRef Mudan KS (1984) Thermal radiation hazards from hydrocarbon pool fires. Prog Energy Combust Sci 10:59–80CrossRef
46.
Zurück zum Zitat Heskestad G (1984) Engineering relations for fire plumes. Fire Saf J 7(2):25–32CrossRef Heskestad G (1984) Engineering relations for fire plumes. Fire Saf J 7(2):25–32CrossRef
47.
Zurück zum Zitat Rew PJ, Hulbert WG (1996) Development of pool fire thermal radiation model. In: HSE Contract Research Report Rew PJ, Hulbert WG (1996) Development of pool fire thermal radiation model. In: HSE Contract Research Report
48.
Zurück zum Zitat Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technol 19(4):251–261CrossRef Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technol 19(4):251–261CrossRef
49.
Zurück zum Zitat Shokri M, Beyler CL (1989) Radiation from large pool fires. SFPE J Fire Protect Eng 4(1):141–150CrossRef Shokri M, Beyler CL (1989) Radiation from large pool fires. SFPE J Fire Protect Eng 4(1):141–150CrossRef
50.
Zurück zum Zitat Society of Fire Protection Engineers (2016) SFPE handbook of fire protection engineering, 6th edn. Springer, New York Society of Fire Protection Engineers (2016) SFPE handbook of fire protection engineering, 6th edn. Springer, New York
51.
Zurück zum Zitat Kamikawa D, Hasemi Y, Wakamatsu T, Kagiya K (2003) Experimental flame heat transfer correlations for a steel column adjacent to and surrounded by a pool fire. In: Fire safety science—proceedings of the seventh international symposium, pp 989–1000. https://doi.org/10.3801/IAFSS.FSS.7-989. Kamikawa D, Hasemi Y, Wakamatsu T, Kagiya K (2003) Experimental flame heat transfer correlations for a steel column adjacent to and surrounded by a pool fire. In: Fire safety science—proceedings of the seventh international symposium, pp 989–1000. https://​doi.​org/​10.​3801/​IAFSS.​FSS.​7-989.
52.
Zurück zum Zitat Hanus F, Vassart O, Tondini N, Nadjai A, Franssen J (2016) Temperature assessment of a vertical steel member subjected to localised fire: experimental tests. In: Proceedings of the 9th conference on structures in fire Hanus F, Vassart O, Tondini N, Nadjai A, Franssen J (2016) Temperature assessment of a vertical steel member subjected to localised fire: experimental tests. In: Proceedings of the 9th conference on structures in fire
53.
Zurück zum Zitat Tondini N, Franssen J-M (2017) Analysis of experimental hydrocarbon localised fires with and without engulfed steel members. Fire Saf J 92(May):9–22CrossRef Tondini N, Franssen J-M (2017) Analysis of experimental hydrocarbon localised fires with and without engulfed steel members. Fire Saf J 92(May):9–22CrossRef
54.
Zurück zum Zitat Francis P, Baddo N, Hanus F, Thauvoye C (2018) Design of columns subject to localised fires. The Steel Construction Institute (SCI), Ascot Francis P, Baddo N, Hanus F, Thauvoye C (2018) Design of columns subject to localised fires. The Steel Construction Institute (SCI), Ascot
55.
Zurück zum Zitat Tondini N, Thauvoye C, Hanus F, Vassart O (2019) Development of an analytical model to predict the radiative heat flux to a vertical element due to a localised fire. Fire Saf J 105(March):227–243CrossRef Tondini N, Thauvoye C, Hanus F, Vassart O (2019) Development of an analytical model to predict the radiative heat flux to a vertical element due to a localised fire. Fire Saf J 105(March):227–243CrossRef
56.
Zurück zum Zitat Yamaguchi T, Wakasa K (1986). Oil pool fire experiment. In: Fire safety science—first international symposium, pp 911–918 Yamaguchi T, Wakasa K (1986). Oil pool fire experiment. In: Fire safety science—first international symposium, pp 911–918
57.
Zurück zum Zitat Zabetakis MG, Burgess DS (1960) Research on the hazards associated with the production and handling of liquid hydrogen. Bureau of Mines, Washington DC Zabetakis MG, Burgess DS (1960) Research on the hazards associated with the production and handling of liquid hydrogen. Bureau of Mines, Washington DC
58.
Zurück zum Zitat Drysdale D (2011) An introduction to fire dynamics, 3rd edn. Wiley, HobokenCrossRef Drysdale D (2011) An introduction to fire dynamics, 3rd edn. Wiley, HobokenCrossRef
59.
Zurück zum Zitat European Committee for Standardisation (2005) Eurocode 3 Design of steel structures—Part 1–2: general rules—structural fire design. European Committee for Standardisation, Brussels European Committee for Standardisation (2005) Eurocode 3 Design of steel structures—Part 1–2: general rules—structural fire design. European Committee for Standardisation, Brussels
60.
Zurück zum Zitat Van Coile R, Elhami Khorasani N, Lange D, Hopkin D (2021) Uncertainty in structural fire engineering. In: LaMalva K, Hopkin D (eds) International handbook of structural fire engineering. Springer, Cham, pp 323–411CrossRef Van Coile R, Elhami Khorasani N, Lange D, Hopkin D (2021) Uncertainty in structural fire engineering. In: LaMalva K, Hopkin D (eds) International handbook of structural fire engineering. Springer, Cham, pp 323–411CrossRef
61.
Zurück zum Zitat Singh K, Gardoni P, Stochino F (2020) Probabilistic models for blast parameters and fragility estimates of steel columns subject to blast loads. Eng Struct 222:110944CrossRef Singh K, Gardoni P, Stochino F (2020) Probabilistic models for blast parameters and fragility estimates of steel columns subject to blast loads. Eng Struct 222:110944CrossRef
62.
Zurück zum Zitat Song X (2020) Parameterized fragility analysis of steel frame structure subjected to blast loads using Bayesian logistic regression method. Struct Saf 87:102000CrossRef Song X (2020) Parameterized fragility analysis of steel frame structure subjected to blast loads using Bayesian logistic regression method. Struct Saf 87:102000CrossRef
63.
Zurück zum Zitat Zhang C, Gholipour G, Mousavi AA (2019) Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading. Eng Struct 181:124–142CrossRef Zhang C, Gholipour G, Mousavi AA (2019) Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading. Eng Struct 181:124–142CrossRef
64.
Zurück zum Zitat FEMA and ASCE (2000) FEMA 356—Prestandard and commentary for the seismic rehabilitation of buildings, November. Federal Emergency Management Agency, Washington DC FEMA and ASCE (2000) FEMA 356—Prestandard and commentary for the seismic rehabilitation of buildings, November. Federal Emergency Management Agency, Washington DC
Metadaten
Titel
Fire Fragility Curves for Industrial Steel Pipe-Racks Integrating Demand and Capacity Uncertainties
verfasst von
Luca Possidente
Jérôme Randaxhe
Nicola Tondini
Publikationsdatum
12.01.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01358-4

Weitere Artikel der Ausgabe 2/2023

Fire Technology 2/2023 Zur Ausgabe