Skip to main content

2016 | OriginalPaper | Buchkapitel

66. Fire Hazard Calculations for Large, Open Hydrocarbon Fires

verfasst von : Craig L. Beyler

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A major challenge in industrial fire protection is controlling the impact from large, open hydrocarbon fires. The primary mechanism for injury of damage from such fires is thermal radiation. Depending on the circumstances and conditions leading to such an event, a different type of open fire may result. For example, ignited releases can produce pool fires, jet flames, vapor cloud fires, or fireballs, all of which behave differently and exhibit markedly different radiation characteristics. This chapter presents detailed techniques for calculating impacts from large, open hydrocarbon fires. Examples are included throughout this chapter to illustrate the application of these expressions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.M. Sparrow and R.D. Cess, Radiation Heat Transfer, Brooks Publication Company, Belmont, CA (1966).MATH E.M. Sparrow and R.D. Cess, Radiation Heat Transfer, Brooks Publication Company, Belmont, CA (1966).MATH
2.
Zurück zum Zitat E.M. Sparrow and R.D. Cess, Radiation Heat Transfer, rev. ed., McGraw-Hill, New York (1978).MATH E.M. Sparrow and R.D. Cess, Radiation Heat Transfer, rev. ed., McGraw-Hill, New York (1978).MATH
3.
Zurück zum Zitat R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, 3rd ed., Hemisphere Publishing Corporation, Washington, DC (1992). R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, 3rd ed., Hemisphere Publishing Corporation, Washington, DC (1992).
4.
Zurück zum Zitat M.F. Modest, Radiation Heat Transfer, McGraw-Hill, New York (1993). M.F. Modest, Radiation Heat Transfer, McGraw-Hill, New York (1993).
5.
Zurück zum Zitat W.H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York (1954). W.H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York (1954).
6.
Zurück zum Zitat D.Q. Kern, Process Heat Transfer, McGraw-Hill, New York (1950). D.Q. Kern, Process Heat Transfer, McGraw-Hill, New York (1950).
7.
Zurück zum Zitat G.H. Markstein, “Radiative Energy Transfer from Turbulent Diffusion Flames,” Combustion and Flame, 27, pp. 51–53 (1976).CrossRef G.H. Markstein, “Radiative Energy Transfer from Turbulent Diffusion Flames,” Combustion and Flame, 27, pp. 51–53 (1976).CrossRef
8.
Zurück zum Zitat V.I. Blinov and G.N. Khudiakov, “Certain Laws Governing Diffusive Burning of Liquids,” SSSR Doklady, Academiia Nauk, pp. 1094–1098 (1957). V.I. Blinov and G.N. Khudiakov, “Certain Laws Governing Diffusive Burning of Liquids,” SSSR Doklady, Academiia Nauk, pp. 1094–1098 (1957).
9.
Zurück zum Zitat H.C. Hottel, “Certain Laws Governing Diffusive Burning of Liquids,” Fire Research Abstract and Revision, 1, p. 41 (1959). H.C. Hottel, “Certain Laws Governing Diffusive Burning of Liquids,” Fire Research Abstract and Revision, 1, p. 41 (1959).
10.
Zurück zum Zitat J. DeRis and L. Orloff, “A Dimensionless Correlation of Pool Burning Data,” Combustion and Flame, 10, pp. 381–388 (1972).CrossRef J. DeRis and L. Orloff, “A Dimensionless Correlation of Pool Burning Data,” Combustion and Flame, 10, pp. 381–388 (1972).CrossRef
11.
Zurück zum Zitat D.S. Burgess, A. Strasser, and J. Grumer, “Diffusive Burning of Liquid Fuels in Open Trays,” Fire Research Abstract and Revision, 3, p. 177 (1961). D.S. Burgess, A. Strasser, and J. Grumer, “Diffusive Burning of Liquid Fuels in Open Trays,” Fire Research Abstract and Revision, 3, p. 177 (1961).
12.
Zurück zum Zitat J. Grumer, A. Strasser, T.A. Kubala, and D.S. Burgess, “Uncontrolled Diffusive Burning of Some New Liquid Propellants,” Fire Research Abstract and Revision, 3, p. 159 (1961). J. Grumer, A. Strasser, T.A. Kubala, and D.S. Burgess, “Uncontrolled Diffusive Burning of Some New Liquid Propellants,” Fire Research Abstract and Revision, 3, p. 159 (1961).
13.
Zurück zum Zitat M.G. Zabetakis and D.S. Burgess, “Research in Hazards Associated with the Production and Handling of Liquid Hydrogen,” U.S. Bureau of Mines Report, RI 5707, Pittsburgh, PA (1961). M.G. Zabetakis and D.S. Burgess, “Research in Hazards Associated with the Production and Handling of Liquid Hydrogen,” U.S. Bureau of Mines Report, RI 5707, Pittsburgh, PA (1961).
14.
Zurück zum Zitat K.S. Mudan, “Thermal Radiation Hazards from Hydrocarbon Pool Fires,” Progress Energy Combustion Science, 10, pp. 59–80 (1984).CrossRef K.S. Mudan, “Thermal Radiation Hazards from Hydrocarbon Pool Fires,” Progress Energy Combustion Science, 10, pp. 59–80 (1984).CrossRef
15.
Zurück zum Zitat S.R. Gollahalli and H.F. Sullivan, “Liquid Pool Fires—A Review,” Research Report #23, University of Waterloo, Canada (1973). S.R. Gollahalli and H.F. Sullivan, “Liquid Pool Fires—A Review,” Research Report #23, University of Waterloo, Canada (1973).
16.
Zurück zum Zitat J. Moorhouse, “Scaling Criteria for Pool Fires Derived from Large-Scale Experiments,” Institution of Chemical Engineers Symposium, 71, pp. 165–179 (1982). J. Moorhouse, “Scaling Criteria for Pool Fires Derived from Large-Scale Experiments,” Institution of Chemical Engineers Symposium, 71, pp. 165–179 (1982).
17.
Zurück zum Zitat K.S. Mudan and P.A. Croce, “Thermal Radiation Model for LNG Trench Fires,” ASME Winter Annual Meeting, New Orleans (1984). K.S. Mudan and P.A. Croce, “Thermal Radiation Model for LNG Trench Fires,” ASME Winter Annual Meeting, New Orleans (1984).
18.
Zurück zum Zitat B. Hagglund and L. Persson, “The Heat Radiation from Petroleum Fires,” FOA Report C 20126-D6 (A3), Stockholm, Sweden (1976). B. Hagglund and L. Persson, “The Heat Radiation from Petroleum Fires,” FOA Report C 20126-D6 (A3), Stockholm, Sweden (1976).
19.
Zurück zum Zitat T. Yamaguchi and K. Wakasa, “Oil Pool Fire Experiments,” Fire Safety Science—Proceedings of the First International Symposium (Grant and Pagni, eds.), Hemisphere Publishing Corporation, Washington, DC, pp. 911–918 (1986). T. Yamaguchi and K. Wakasa, “Oil Pool Fire Experiments,” Fire Safety Science—Proceedings of the First International Symposium (Grant and Pagni, eds.), Hemisphere Publishing Corporation, Washington, DC, pp. 911–918 (1986).
20.
Zurück zum Zitat P.G. Seeger, “On the Combustion and Heat Transfer in Fires of Liquid Fuels in Tanks,” in Heat Transfer in Fires (P.L. Blackshear, ed.), Scripta Book Company, Washington, DC, pp. 95–126 (1974). P.G. Seeger, “On the Combustion and Heat Transfer in Fires of Liquid Fuels in Tanks,” in Heat Transfer in Fires (P.L. Blackshear, ed.), Scripta Book Company, Washington, DC, pp. 95–126 (1974).
21.
Zurück zum Zitat T. Yumoto, “Fire Spread Between Two Oil Tanks,” Journal of Fire and Flammability, 8, p. 494 (1977). T. Yumoto, “Fire Spread Between Two Oil Tanks,” Journal of Fire and Flammability, 8, p. 494 (1977).
22.
Zurück zum Zitat T. Dayan and V.L. Tien, “Radiant Heating from a Cylindrical Column,” Combustion Science and Technology, 9, pp. 51–56 (1974).CrossRef T. Dayan and V.L. Tien, “Radiant Heating from a Cylindrical Column,” Combustion Science and Technology, 9, pp. 51–56 (1974).CrossRef
23.
Zurück zum Zitat W.G. May and W. McQueen, “Radiation from Large Liquefied Natural Gas Fires,” Combustion Science and Technology, 7, pp. 51–56 (1973).CrossRef W.G. May and W. McQueen, “Radiation from Large Liquefied Natural Gas Fires,” Combustion Science and Technology, 7, pp. 51–56 (1973).CrossRef
24.
Zurück zum Zitat M. Klassen and J.P. Gore, “Structure and Radiation Properties of Pool Fires,” NIST-GCR-94-651, U.S. Department of Commerce, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (1994). M. Klassen and J.P. Gore, “Structure and Radiation Properties of Pool Fires,” NIST-GCR-94-651, U.S. Department of Commerce, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (1994).
25.
Zurück zum Zitat H. Koseki and G.W. Mulholland, “The Effect of Diameter on the Burning of Crude Oil Pool Fire,” Fire Technology, 27, 1, pp. 54–65 (1991).CrossRef H. Koseki and G.W. Mulholland, “The Effect of Diameter on the Burning of Crude Oil Pool Fire,” Fire Technology, 27, 1, pp. 54–65 (1991).CrossRef
26.
Zurück zum Zitat H. Koseki and T. Yumoto, “Air Entrainment and Thermal Radiation from Heptane Pool Fires,” Fire Technology, 24, 1, pp. 33–47 (1988).CrossRef H. Koseki and T. Yumoto, “Air Entrainment and Thermal Radiation from Heptane Pool Fires,” Fire Technology, 24, 1, pp. 33–47 (1988).CrossRef
27.
Zurück zum Zitat H. Koseki and T. Yumoto, “Burning Characteristics of Heptane in 2.7-m Square Dike Fires,” Fire Safety Science—Proceedings of the Second International Symposium (Wakamatsu et al., eds.), Hemisphere Publishing Corporation, Washington, DC, pp. 231–240 (1989). H. Koseki and T. Yumoto, “Burning Characteristics of Heptane in 2.7-m Square Dike Fires,” Fire Safety Science—Proceedings of the Second International Symposium (Wakamatsu et al., eds.), Hemisphere Publishing Corporation, Washington, DC, pp. 231–240 (1989).
28.
Zurück zum Zitat T. Yumoto, “An Experimental Study on Heat Radiation from Oil Tank Fire,” Fire Research Institute, Report No. 33—Report of Oil Tank Fire, Fire Research Institute, Tokyo, p. 23 (1971). T. Yumoto, “An Experimental Study on Heat Radiation from Oil Tank Fire,” Fire Research Institute, Report No. 33—Report of Oil Tank Fire, Fire Research Institute, Tokyo, p. 23 (1971).
29.
Zurück zum Zitat “Report of Oil Tank Fire Experiment,” Japan Society of Safety Engineering (1979). “Report of Oil Tank Fire Experiment,” Japan Society of Safety Engineering (1979).
30.
Zurück zum Zitat “Report of Oil Tank Fire Extinguishment,” Technical Report No. 8, Fire Research Institute (FRI), Tokyo (1976). “Report of Oil Tank Fire Extinguishment,” Technical Report No. 8, Fire Research Institute (FRI), Tokyo (1976).
31.
Zurück zum Zitat T.T. Fu, “Heat Radiation from Fires of Aviation Fuels,” Fire Technology, 10, 1, pp. 54–67 (1973).CrossRef T.T. Fu, “Heat Radiation from Fires of Aviation Fuels,” Fire Technology, 10, 1, pp. 54–67 (1973).CrossRef
32.
Zurück zum Zitat H.T. Johnson, L.J. Linley, and J.A. Mansfield, “Measurement of the Spatial Dependence of Temperature and Gas and Soot Concentrations within Large Open Hydrocarbon Fuel Fires,” NASA Technical Memorandum 58230, Lyndon B. Johnson Space Center, Houston (1982). H.T. Johnson, L.J. Linley, and J.A. Mansfield, “Measurement of the Spatial Dependence of Temperature and Gas and Soot Concentrations within Large Open Hydrocarbon Fuel Fires,” NASA Technical Memorandum 58230, Lyndon B. Johnson Space Center, Houston (1982).
33.
Zurück zum Zitat P.K. Raj, K.S. Mudan, and A.N. Moussa, “Experiments Involving Pool and Vapour Fires from Spills of LNG on Water,” Report No. CG-D-55-79, NTIS AD77073, U.S. Coast Guard, Washington, DC (1979). P.K. Raj, K.S. Mudan, and A.N. Moussa, “Experiments Involving Pool and Vapour Fires from Spills of LNG on Water,” Report No. CG-D-55-79, NTIS AD77073, U.S. Coast Guard, Washington, DC (1979).
34.
Zurück zum Zitat R.S. Alger, R.C. Corlett, A.S. Gordon, and F.A. Williams, “Some Aspects of Turbulent Pool Fires,” Fire Technology, 15, 2, pp. 142–156 (1979).CrossRef R.S. Alger, R.C. Corlett, A.S. Gordon, and F.A. Williams, “Some Aspects of Turbulent Pool Fires,” Fire Technology, 15, 2, pp. 142–156 (1979).CrossRef
35.
Zurück zum Zitat G.A. Mizner and J.A. Eyre, “Radiation from Liquefied Gas Fire on Water,” Combustion Science and Technology, 35, pp. 33–57 (1983).CrossRef G.A. Mizner and J.A. Eyre, “Radiation from Liquefied Gas Fire on Water,” Combustion Science and Technology, 35, pp. 33–57 (1983).CrossRef
36.
Zurück zum Zitat D.S. Burgess and M. Hertzberg, “Radiation from Pool Fires,” in Heat Transfer in Fire (N.H. Afgan and J.R. Beer, eds.), Scripta Book Company, Washington, DC, pp. 413–430 (1974). D.S. Burgess and M. Hertzberg, “Radiation from Pool Fires,” in Heat Transfer in Fire (N.H. Afgan and J.R. Beer, eds.), Scripta Book Company, Washington, DC, pp. 413–430 (1974).
37.
Zurück zum Zitat “LNG Safety Research Program,” Report IS 3-1, American Gas Association (1974). “LNG Safety Research Program,” Report IS 3-1, American Gas Association (1974).
38.
Zurück zum Zitat P.H. Thomas, “The Size of Flames from Natural Fires,” Ninth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 844–859 (1962). P.H. Thomas, “The Size of Flames from Natural Fires,” Ninth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 844–859 (1962).
39.
Zurück zum Zitat G. Mangialavori and F. Rubino, Seventh International Symposium on Loss Prevention and Safety Promotion in Process Industry, Taorina, Italy (May 1992). G. Mangialavori and F. Rubino, Seventh International Symposium on Loss Prevention and Safety Promotion in Process Industry, Taorina, Italy (May 1992).
40.
Zurück zum Zitat M. Prichard and T. Binding, Symposium on Major Hazards Onshore and Offshore, Institution of Chemical Engineers, London, UK, pp. 491–505 (1992). M. Prichard and T. Binding, Symposium on Major Hazards Onshore and Offshore, Institution of Chemical Engineers, London, UK, pp. 491–505 (1992).
41.
Zurück zum Zitat M. Munoz, J. Arnaldos, and C. Planas, “Analysis of the Geometric and Radiative Characteristics of Hydrocarbon Pool Fires,” Combustion and Flame, 139, pp. 263–277 (2004).CrossRef M. Munoz, J. Arnaldos, and C. Planas, “Analysis of the Geometric and Radiative Characteristics of Hydrocarbon Pool Fires,” Combustion and Flame, 139, pp. 263–277 (2004).CrossRef
42.
Zurück zum Zitat G. Heskestad, “Luminous Height of Turbulent Diffusion Flames,” Fire Safety Journal, 5, 2, pp. 103–108 (1983).CrossRef G. Heskestad, “Luminous Height of Turbulent Diffusion Flames,” Fire Safety Journal, 5, 2, pp. 103–108 (1983).CrossRef
43.
Zurück zum Zitat G. Heskestad, “Peak Gas Velocities and Flame Heights of Buoyancy-Controlled Turbulent Diffusion Flames,” Eighteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 951–960 (1981). G. Heskestad, “Peak Gas Velocities and Flame Heights of Buoyancy-Controlled Turbulent Diffusion Flames,” Eighteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 951–960 (1981).
44.
Zurück zum Zitat J.R. Welker and C.M. Sliepcevich, “Bending of Wind-Blown Flames from Liquid Pools,” Fire Technology, 2, 2, pp. 127–135 (1966).CrossRef J.R. Welker and C.M. Sliepcevich, “Bending of Wind-Blown Flames from Liquid Pools,” Fire Technology, 2, 2, pp. 127–135 (1966).CrossRef
45.
Zurück zum Zitat I. Emori and K. Saito, “Scaling Correlation and Smoke Observations of Oil Tank Fires Under Wind-Blown Conditions,” Chemical and Physical Process in Combustion, Fall Technical Meeting, Combustion Institute/Eastern States Section, Providence, RI, Vol. 67, pp. 1–4 November (1983). I. Emori and K. Saito, “Scaling Correlation and Smoke Observations of Oil Tank Fires Under Wind-Blown Conditions,” Chemical and Physical Process in Combustion, Fall Technical Meeting, Combustion Institute/Eastern States Section, Providence, RI, Vol. 67, pp. 1–4 November (1983).
46.
Zurück zum Zitat P. Thomas, “Fire Spread in Wooden Cribs, Part III, The Effect of Wind,” Fire Research Note 600, Fire Research Station, Borehamwood, UK (1965). P. Thomas, “Fire Spread in Wooden Cribs, Part III, The Effect of Wind,” Fire Research Note 600, Fire Research Station, Borehamwood, UK (1965).
47.
Zurück zum Zitat D.M. Defaveri, A. Vidili, R. Pastorino, and G. Ferraiolo, “Wind Effects on Diffusion Flames of Fires of High Source Momentum,” Journal of Hazardous Materials, 22, pp. 86–100 (1989). D.M. Defaveri, A. Vidili, R. Pastorino, and G. Ferraiolo, “Wind Effects on Diffusion Flames of Fires of High Source Momentum,” Journal of Hazardous Materials, 22, pp. 86–100 (1989).
48.
Zurück zum Zitat M. Shokri and C.L. Beyler, “Radiation from Larger Pool Fires,” SFPE Journal of Fire Protection Engineering, 4, 1, pp. 141–150 (1989).CrossRef M. Shokri and C.L. Beyler, “Radiation from Larger Pool Fires,” SFPE Journal of Fire Protection Engineering, 4, 1, pp. 141–150 (1989).CrossRef
49.
Zurück zum Zitat H. Koseki, “Combustion Properties of Large Liquid Pool Fires,” Fire Technology, 25, 3, pp. 241–255 (1989).CrossRef H. Koseki, “Combustion Properties of Large Liquid Pool Fires,” Fire Technology, 25, 3, pp. 241–255 (1989).CrossRef
50.
Zurück zum Zitat “Assessing Flame Radiation to External Targets from Pool Fires,” SFPE Engineering Guide, Society of Fire Protection Engineers (SFPE), Bethesda, MD (1999). “Assessing Flame Radiation to External Targets from Pool Fires,” SFPE Engineering Guide, Society of Fire Protection Engineers (SFPE), Bethesda, MD (1999).
51.
Zurück zum Zitat D. Drysdale, An Introduction to Fire Dynamics, 3nd ed., John Wiley and Sons, New York, p. 148 (2011). D. Drysdale, An Introduction to Fire Dynamics, 3nd ed., John Wiley and Sons, New York, p. 148 (2011).
52.
Zurück zum Zitat A. Modak, “Thermal Radiation from Pool Fires,” Combustion and Flame, 29, pp. 177–192 (1977).CrossRef A. Modak, “Thermal Radiation from Pool Fires,” Combustion and Flame, 29, pp. 177–192 (1977).CrossRef
53.
Zurück zum Zitat J.R. Howell, A Catalog of Radiation Configuration Factors, McGraw-Hill, New York (1982). J.R. Howell, A Catalog of Radiation Configuration Factors, McGraw-Hill, New York (1982).
54.
Zurück zum Zitat H.C. Hottel, “Radiant Heat Transmission,” in Heat Transmission, 3rd ed. (W.H. McAdams), McGraw-Hill, New York (1954). H.C. Hottel, “Radiant Heat Transmission,” in Heat Transmission, 3rd ed. (W.H. McAdams), McGraw-Hill, New York (1954).
55.
Zurück zum Zitat J.H. McGurie, “Heat Transfer by Radiation,” Fire Research Special Report 2, HM Stationary Office, London (1953). J.H. McGurie, “Heat Transfer by Radiation,” Fire Research Special Report 2, HM Stationary Office, London (1953).
56.
Zurück zum Zitat D.C. Hamilton and W.R. Morgan, “Radiant-Interchange Configuration Factors,” National Advisory Committee for Aeronautic (NACA), Technical Note 2836, Washington, DC (1952). D.C. Hamilton and W.R. Morgan, “Radiant-Interchange Configuration Factors,” National Advisory Committee for Aeronautic (NACA), Technical Note 2836, Washington, DC (1952).
57.
Zurück zum Zitat K.S. Mudan, “Geometric View Factors for Thermal Radiation Hazard Assessment,” Fire Safety Journal, 12, 2, pp. 89–96 (1987).CrossRef K.S. Mudan, “Geometric View Factors for Thermal Radiation Hazard Assessment,” Fire Safety Journal, 12, 2, pp. 89–96 (1987).CrossRef
58.
Zurück zum Zitat E.M. Sparrow, “A New Simpler Formulation for Radiative Angler Factors,” Journal of Heat Transfer, ASME, 85, pp. 81–88 (1963).CrossRef E.M. Sparrow, “A New Simpler Formulation for Radiative Angler Factors,” Journal of Heat Transfer, ASME, 85, pp. 81–88 (1963).CrossRef
59.
Zurück zum Zitat Handbook of Military Infrared Technology (W.L. Wolfe, ed.), Office of National Research, Washington, DC (1965). Handbook of Military Infrared Technology (W.L. Wolfe, ed.), Office of National Research, Washington, DC (1965).
60.
Zurück zum Zitat H.C. Hottel and A.F. Sarofim, Radiative Transfer, McGraw-Hill, New York (1967). H.C. Hottel and A.F. Sarofim, Radiative Transfer, McGraw-Hill, New York (1967).
61.
Zurück zum Zitat C.L. Beyler, “Fire Plumes and Ceiling Jets,” Fire Safety Journal, 11, pp. 53–75 (1986).CrossRef C.L. Beyler, “Fire Plumes and Ceiling Jets,” Fire Safety Journal, 11, pp. 53–75 (1986).CrossRef
62.
63.
Zurück zum Zitat B. McCaffrey, NBSIR 79-1910, National Bureau of Standards, Washington, DC (1979). B. McCaffrey, NBSIR 79-1910, National Bureau of Standards, Washington, DC (1979).
64.
Zurück zum Zitat T. Terai and K. Nitta, Symposium of Architectural Institute of Japan, Nagoya (1976). T. Terai and K. Nitta, Symposium of Architectural Institute of Japan, Nagoya (1976).
65.
Zurück zum Zitat H.C. Kung and P. Stavrianidis, Nineteenth International Symposium on Combustion, Combustion Institute, Pittsburgh, p. 905 (1982). H.C. Kung and P. Stavrianidis, Nineteenth International Symposium on Combustion, Combustion Institute, Pittsburgh, p. 905 (1982).
66.
Zurück zum Zitat L.H. Russell and J.A. Canfield, “Experimental Measurement of Heat Transfer to a Cylinder Immersed in a Large Aviation Fuel Fire,” Journal of Heat Transfer, 95, pp. 397–404 (1973).CrossRef L.H. Russell and J.A. Canfield, “Experimental Measurement of Heat Transfer to a Cylinder Immersed in a Large Aviation Fuel Fire,” Journal of Heat Transfer, 95, pp. 397–404 (1973).CrossRef
67.
Zurück zum Zitat J.J. Gregory, N.R. Keltner, and R. Mata, Jr., “Thermal Measurements in Large Pool Fires,” Journal of Heat Transfer, 111, (1989). J.J. Gregory, N.R. Keltner, and R. Mata, Jr., “Thermal Measurements in Large Pool Fires,” Journal of Heat Transfer, 111, (1989).
68.
Zurück zum Zitat C. Anderson et al., “Effects of a Fire Environment on a Rail Tank Car Filled with LPG,” Report No. FRA-OR&D 75-31, U.S. Department of Transportation, Federal Railroad Administration, Washington, DC (1974). C. Anderson et al., “Effects of a Fire Environment on a Rail Tank Car Filled with LPG,” Report No. FRA-OR&D 75-31, U.S. Department of Transportation, Federal Railroad Administration, Washington, DC (1974).
69.
Zurück zum Zitat F.D. Wayne and K. Kinsella, “Spectral Emission Characteristics of Large Hydrocarbon Pool Fires,” 84-WA/HT-74, The American Society of Mechanical Engineers, New York (1984). F.D. Wayne and K. Kinsella, “Spectral Emission Characteristics of Large Hydrocarbon Pool Fires,” 84-WA/HT-74, The American Society of Mechanical Engineers, New York (1984).
70.
Zurück zum Zitat A.J. Taylor et al., “Engulfment Fire Tests on Road Tanker Sections,” Rarde Technical Report 7/75, Controller HMSO, London (1975). A.J. Taylor et al., “Engulfment Fire Tests on Road Tanker Sections,” Rarde Technical Report 7/75, Controller HMSO, London (1975).
71.
Zurück zum Zitat W.H. McLain, “Investigation of the Fire Safety Characteristics of Portable Tanks Polyethylene Tanks Containing Flammable Liquids,” Report No. CG-M-1-88, U.S. Coast Guard, Washington, DC (1988). W.H. McLain, “Investigation of the Fire Safety Characteristics of Portable Tanks Polyethylene Tanks Containing Flammable Liquids,” Report No. CG-M-1-88, U.S. Coast Guard, Washington, DC (1988).
72.
Zurück zum Zitat J.J. Gregory, N.R. Keltner, and R. Mata, Jr., “Thermal Measurements in Large Pool Fires,” SAND-87-0094C, Sandia National Laboratories, Albuquerque (1987). J.J. Gregory, N.R. Keltner, and R. Mata, Jr., “Thermal Measurements in Large Pool Fires,” SAND-87-0094C, Sandia National Laboratories, Albuquerque (1987).
73.
Zurück zum Zitat G.P. Wachtell and J.W. Langhaar, “Fire Test and Thermal Behavior of 150-Ton Lead-Shielded Cask,” DP 1070, Engineering and Equipment, TID-4500, E.I. DuPont De Nemours and Co., Wilmington, DE (1966). G.P. Wachtell and J.W. Langhaar, “Fire Test and Thermal Behavior of 150-Ton Lead-Shielded Cask,” DP 1070, Engineering and Equipment, TID-4500, E.I. DuPont De Nemours and Co., Wilmington, DE (1966).
74.
Zurück zum Zitat National Academy of Science Committee on Hazardous Materials, Division of Chemistry and Chemical Technology (National Research Council, ed.), Pressure-Relieving Systems for Marine Cargo Bulk Liquid Containers, National Academy of Sciences, Washington, DC (1973). National Academy of Science Committee on Hazardous Materials, Division of Chemistry and Chemical Technology (National Research Council, ed.), Pressure-Relieving Systems for Marine Cargo Bulk Liquid Containers, National Academy of Sciences, Washington, DC (1973).
75.
Zurück zum Zitat K. Moodie et al., “Total Pool Fire Engulfment Trials on a 5-Tonne LPG Tank,” HSE Internal Report No. IR/L/FR/87/27, London (1987). K. Moodie et al., “Total Pool Fire Engulfment Trials on a 5-Tonne LPG Tank,” HSE Internal Report No. IR/L/FR/87/27, London (1987).
76.
Zurück zum Zitat M. Tunc and J.E.S. Venart, “Incident Radiation from an Engulfing Pool Fire to a Horizontal Cylinder, Part I & II,” Fire Safety Journal, 8, pp. 81–95 (1984/1985). M. Tunc and J.E.S. Venart, “Incident Radiation from an Engulfing Pool Fire to a Horizontal Cylinder, Part I & II,” Fire Safety Journal, 8, pp. 81–95 (1984/1985).
77.
Zurück zum Zitat T.A. Brzustowski, “A New Criterion for the Length of a Gaseous Turbulent Diffusion Flame,” Combustion Science and Technology, 6, pp. 313–319 (1973).CrossRef T.A. Brzustowski, “A New Criterion for the Length of a Gaseous Turbulent Diffusion Flame,” Combustion Science and Technology, 6, pp. 313–319 (1973).CrossRef
78.
Zurück zum Zitat T.A. Brzustowski, “Flaring in the Energy Industry,” Progress Energy Combustion Science, 2, pp. 129–141 (1976).CrossRef T.A. Brzustowski, “Flaring in the Energy Industry,” Progress Energy Combustion Science, 2, pp. 129–141 (1976).CrossRef
79.
Zurück zum Zitat T.A. Brzustowski, “Flaring: State of the Art,” Loss Prevention, 11, p. 15 (1977). T.A. Brzustowski, “Flaring: State of the Art,” Loss Prevention, 11, p. 15 (1977).
80.
Zurück zum Zitat T.A. Brzustowski and E.C. Sommer, “Predicting Radiant Heating from Flares,” Proceedings of the API Division of Refining, 53, p. 865 (1973). T.A. Brzustowski and E.C. Sommer, “Predicting Radiant Heating from Flares,” Proceedings of the API Division of Refining, 53, p. 865 (1973).
81.
Zurück zum Zitat T.A. Brzustowski, S.R. Gollahalli, and H.F. Sullivan, “The Turbulent Hydrogen Diffusion Flame in a Cross-Wind,” Combustion Science and Technology, 11, pp. 29–33 (1975).CrossRef T.A. Brzustowski, S.R. Gollahalli, and H.F. Sullivan, “The Turbulent Hydrogen Diffusion Flame in a Cross-Wind,” Combustion Science and Technology, 11, pp. 29–33 (1975).CrossRef
82.
Zurück zum Zitat T.A. Brzustowski, S.R. Gollahalli, M.P. Gupta, M. Kaptein, and H.F. Sullivan, “Radiant Heating from Flares,” ASME Paper 75-HT-4, American Society of Mechanical Engineers (ASME), New York (1975). T.A. Brzustowski, S.R. Gollahalli, M.P. Gupta, M. Kaptein, and H.F. Sullivan, “Radiant Heating from Flares,” ASME Paper 75-HT-4, American Society of Mechanical Engineers (ASME), New York (1975).
83.
Zurück zum Zitat H.C. Hottel and W.R. Hawthorne, “Diffusion in Laminar Flame Jets,” Third Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 254–266 (1949). H.C. Hottel and W.R. Hawthorne, “Diffusion in Laminar Flame Jets,” Third Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 254–266 (1949).
84.
Zurück zum Zitat W.R. Hawthorne, D.S. Weddell, and H.C. Hottell, “Mixing and Combustion on Turbulent Gas Jet,” Third Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 266–288 (1949). W.R. Hawthorne, D.S. Weddell, and H.C. Hottell, “Mixing and Combustion on Turbulent Gas Jet,” Third Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 266–288 (1949).
85.
Zurück zum Zitat K. Gugan, “Flixborough—A Combustion Specialist’s Viewpoint,” Chemical Engineering, 309, London (1976). K. Gugan, “Flixborough—A Combustion Specialist’s Viewpoint,” Chemical Engineering, 309, London (1976).
86.
Zurück zum Zitat F.P. Ricou and D.B. Spalding, “Measurements of Entrainment by Axisymmetrical Turbulent Jets,” Journal of Fluid Mechanics, II, p. 21 (1961).CrossRefMATH F.P. Ricou and D.B. Spalding, “Measurements of Entrainment by Axisymmetrical Turbulent Jets,” Journal of Fluid Mechanics, II, p. 21 (1961).CrossRefMATH
87.
Zurück zum Zitat A.A. Putnam and C.F. Speich, “A Model Study of the Interaction of Multiple Turbulent Diffusion Flames,” Ninth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 867–877 (1963). A.A. Putnam and C.F. Speich, “A Model Study of the Interaction of Multiple Turbulent Diffusion Flames,” Ninth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 867–877 (1963).
88.
Zurück zum Zitat F.R. Steward, “Prediction of the Height of Turbulent Diffusion Buoyant Flames,” Combustion Science and Technology, 2, pp. 203–212 (1970).CrossRef F.R. Steward, “Prediction of the Height of Turbulent Diffusion Buoyant Flames,” Combustion Science and Technology, 2, pp. 203–212 (1970).CrossRef
89.
Zurück zum Zitat B. McCaffrey, “Some Measurements of the Radiative Power Output of Diffusion Flames,” WSS/CI 81-15, Western States Section, Combustion Institute, Pittsburgh (1981). B. McCaffrey, “Some Measurements of the Radiative Power Output of Diffusion Flames,” WSS/CI 81-15, Western States Section, Combustion Institute, Pittsburgh (1981).
90.
Zurück zum Zitat B. Kalghatgi, “Blow-Out Stability of Gaseous Jet Diffusion Flames, Parts I and II,” Combustion Science and Technology, 26, pp. 233–250 (1981).CrossRef B. Kalghatgi, “Blow-Out Stability of Gaseous Jet Diffusion Flames, Parts I and II,” Combustion Science and Technology, 26, pp. 233–250 (1981).CrossRef
91.
Zurück zum Zitat B. McCaffrey and D. Evans, “Very Large Methane Jet Diffusion Flames,” Twenty-First Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 25–31 (1986). B. McCaffrey and D. Evans, “Very Large Methane Jet Diffusion Flames,” Twenty-First Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 25–31 (1986).
92.
Zurück zum Zitat S.R. Gollahalli, T.A. Brzustowski, and H.F. Sullivan, “Characteristics of a Turbulent Propane Diffusion Flame in a Cross-Wind,” Transactions of CSMC, 3, pp. 205–214 (1975). S.R. Gollahalli, T.A. Brzustowski, and H.F. Sullivan, “Characteristics of a Turbulent Propane Diffusion Flame in a Cross-Wind,” Transactions of CSMC, 3, pp. 205–214 (1975).
93.
Zurück zum Zitat G.T. Kalghatki, “The Visible Shape and Size of a Turbulent Jet Diffusion Flame in a Crosswind,” Combustion and Flame, 52, pp. 91–106 (1983).CrossRef G.T. Kalghatki, “The Visible Shape and Size of a Turbulent Jet Diffusion Flame in a Crosswind,” Combustion and Flame, 52, pp. 91–106 (1983).CrossRef
94.
Zurück zum Zitat O.K. Sonju and J. Hustad, “An Experimental Study of Turbulent Jet Diffusion Flame in a Crosswind,” Norwegian Maritime Research, pp. 2–11 (1984). O.K. Sonju and J. Hustad, “An Experimental Study of Turbulent Jet Diffusion Flame in a Crosswind,” Norwegian Maritime Research, pp. 2–11 (1984).
95.
Zurück zum Zitat G.A. Chamberlain, “Developments in Design Methods for Predicting Thermal Radiation from Flares,” Chemical Engineering Research and Design, 65, p. 299 (1987). G.A. Chamberlain, “Developments in Design Methods for Predicting Thermal Radiation from Flares,” Chemical Engineering Research and Design, 65, p. 299 (1987).
96.
Zurück zum Zitat A.D. Johnson, H.M. Brightwell, and A.J. Carsley, “A Model for Predicting the Thermal Radiation Hazards from Large-Scale Horizontally Released Nature Gas Jet Fires,” Hazards, XII, p. 123 (1994). A.D. Johnson, H.M. Brightwell, and A.J. Carsley, “A Model for Predicting the Thermal Radiation Hazards from Large-Scale Horizontally Released Nature Gas Jet Fires,” Hazards, XII, p. 123 (1994).
97.
Zurück zum Zitat D.K. Cook, M. Fairweather, J. Hammonds, and D.J. Hughes, “Size and Radiative Characteristics of Natural Gas Flares,” Chemical Engineering Research and Design, 65, pp. 310, 318 (1987). D.K. Cook, M. Fairweather, J. Hammonds, and D.J. Hughes, “Size and Radiative Characteristics of Natural Gas Flares,” Chemical Engineering Research and Design, 65, pp. 310, 318 (1987).
98.
Zurück zum Zitat W.J.S. Hirst, “Combustion of Large Scale Jet-Releases of Pressurised Liquid Propane,” Comm. 1241 (London: Institution of Gas Engineers) (1984). W.J.S. Hirst, “Combustion of Large Scale Jet-Releases of Pressurised Liquid Propane,” Comm. 1241 (London: Institution of Gas Engineers) (1984).
99.
Zurück zum Zitat V.H.Y. Tam and L.T. Cowley, “Consequence of Pressurised LPG Release—A Full-Scale Experiment,” Gastech 88, Paper 4.3 (1989). V.H.Y. Tam and L.T. Cowley, “Consequence of Pressurised LPG Release—A Full-Scale Experiment,” Gastech 88, Paper 4.3 (1989).
100.
Zurück zum Zitat T.A. Brzustowski, “Predicting Radiant Heating from Flares,” Esso Engineering Research and Development Report, EE 15ER.71 (1971). T.A. Brzustowski, “Predicting Radiant Heating from Flares,” Esso Engineering Research and Development Report, EE 15ER.71 (1971).
101.
Zurück zum Zitat P.R. Oenbring and T.R. Sifferman, “Flare Design—Are Current Methods Too Conservative?” Hydrocarbon Processing, pp. 124–129 (1980). P.R. Oenbring and T.R. Sifferman, “Flare Design—Are Current Methods Too Conservative?” Hydrocarbon Processing, pp. 124–129 (1980).
102.
Zurück zum Zitat S.H. Tan, “Flare System Design Simplified,” Hydrocarbon Processing, 46, pp. 172–176 (1967). S.H. Tan, “Flare System Design Simplified,” Hydrocarbon Processing, 46, pp. 172–176 (1967).
103.
Zurück zum Zitat G.R. Kent, “Practical Design of Flare Stacks,” Hydrocarbon Processing, 43, pp. 121–125 (1964). G.R. Kent, “Practical Design of Flare Stacks,” Hydrocarbon Processing, 43, pp. 121–125 (1964).
104.
Zurück zum Zitat D. Evans and D. Pfenning, “Water Sprays Suppress Gas-Well Blowout Fires,” Oil and Gas Journal, 83, pp. 80–86 (1985). D. Evans and D. Pfenning, “Water Sprays Suppress Gas-Well Blowout Fires,” Oil and Gas Journal, 83, pp. 80–86 (1985).
105.
Zurück zum Zitat B. McCaffrey, “Jet Diffusion Flame Suppression Using Water Sprays, An Interim Report,” Combustion Science and Technology, 40, pp. 107–136 (1984).CrossRef B. McCaffrey, “Jet Diffusion Flame Suppression Using Water Sprays, An Interim Report,” Combustion Science and Technology, 40, pp. 107–136 (1984).CrossRef
106.
Zurück zum Zitat B. McCaffrey, “Momentum Diffusion Flame Characteristics and the Effects of Water Spray,” Combustion Science and Technology, 63, pp. 315–335 (1989).CrossRef B. McCaffrey, “Momentum Diffusion Flame Characteristics and the Effects of Water Spray,” Combustion Science and Technology, 63, pp. 315–335 (1989).CrossRef
107.
Zurück zum Zitat J.F. Straitz III, J.A. O’Leary, J.E. Brennan, and C.J. Kardan, “Flare Testing and Safety,” Loss Prevention, II, pp. 23–30 (1977). J.F. Straitz III, J.A. O’Leary, J.E. Brennan, and C.J. Kardan, “Flare Testing and Safety,” Loss Prevention, II, pp. 23–30 (1977).
108.
Zurück zum Zitat W.W. Yuen and C.L. Tien, “Simple Calculation Scheme for the Luminous Flame Emissivity,” Sixteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 1481–1487 (1976). W.W. Yuen and C.L. Tien, “Simple Calculation Scheme for the Luminous Flame Emissivity,” Sixteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 1481–1487 (1976).
109.
Zurück zum Zitat G. Fumarola, D.M. de Faveri, R. Pastorino, and G. Ferraiolo, “Determining Safety Zones for Exposure to Flare Radiation,” Institute of Chemical Engineering Symposium, Series 82, Loss Prevention and Safety Promotion, pp. G23–G30 (1983). G. Fumarola, D.M. de Faveri, R. Pastorino, and G. Ferraiolo, “Determining Safety Zones for Exposure to Flare Radiation,” Institute of Chemical Engineering Symposium, Series 82, Loss Prevention and Safety Promotion, pp. G23–G30 (1983).
110.
Zurück zum Zitat P.R. Oenbring and T.R. Sifferman, “Flare Design Based on Full-Scale Plant Data,” Forty-Fifth Midyear Meeting, API Refining Department Proceedings, 59, Houston (1980). P.R. Oenbring and T.R. Sifferman, “Flare Design Based on Full-Scale Plant Data,” Forty-Fifth Midyear Meeting, API Refining Department Proceedings, 59, Houston (1980).
111.
Zurück zum Zitat S. Galant, D. Grouset, G. Martinez, P. Micheau, and J.B. Allemand, “Three-Dimensional Steady Parabolic Calculations of Large Scale Methane Turbulent Diffusion Flames to Predict Flare Radiation Under Cross-Wind Conditions,” Twentieth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 531–540 (1984). S. Galant, D. Grouset, G. Martinez, P. Micheau, and J.B. Allemand, “Three-Dimensional Steady Parabolic Calculations of Large Scale Methane Turbulent Diffusion Flames to Predict Flare Radiation Under Cross-Wind Conditions,” Twentieth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 531–540 (1984).
112.
Zurück zum Zitat L. Cowley and M. Prichard, “Large-Scale Natural Gas and LPG Jet Fires and Thermal Impact on Structures,” GASTECH 90 Conference, Amsterdam (1990). L. Cowley and M. Prichard, “Large-Scale Natural Gas and LPG Jet Fires and Thermal Impact on Structures,” GASTECH 90 Conference, Amsterdam (1990).
113.
Zurück zum Zitat A. Parker, “Evaluating High-Temperature Intumescent Insulation Materials Under Fire and Blast Conditions,” Insulation Materials: Testing and Applications: Third Volume, ASTM STP 1320 (Graves and Zarr, eds.), American Society for Testing and Materials, Philadelphia (1997). A. Parker, “Evaluating High-Temperature Intumescent Insulation Materials Under Fire and Blast Conditions,” Insulation Materials: Testing and Applications: Third Volume, ASTM STP 1320 (Graves and Zarr, eds.), American Society for Testing and Materials, Philadelphia (1997).
114.
Zurück zum Zitat R. Wighus and G. Dransgsholt, “Impinging Jet Fire Experiments—Propane 14 MW Laboratory Tests,” Report STF25 A92026, SINTEF NB, Norwegian Fire Research Laboratory (1993). R. Wighus and G. Dransgsholt, “Impinging Jet Fire Experiments—Propane 14 MW Laboratory Tests,” Report STF25 A92026, SINTEF NB, Norwegian Fire Research Laboratory (1993).
115.
Zurück zum Zitat K.S. Mudan, “Hydrocarbon Pool and Vapor Fire Data Analysis,” U.S. DOT Report DE-AC01-83EP16008, U.S. Department of Transportation, Washington, DC (1984). K.S. Mudan, “Hydrocarbon Pool and Vapor Fire Data Analysis,” U.S. DOT Report DE-AC01-83EP16008, U.S. Department of Transportation, Washington, DC (1984).
116.
Zurück zum Zitat J.A. Fay and D.H. Lewis, “Unsteady Burning of Unconfined Fuel Vapor Clouds,” Sixteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh pp. 1397–1405 (1976). J.A. Fay and D.H. Lewis, “Unsteady Burning of Unconfined Fuel Vapor Clouds,” Sixteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh pp. 1397–1405 (1976).
117.
Zurück zum Zitat P.K. Raj and H.W. Emmons, “On the Burning of a Large Flammable Vapor Cloud,” Combustion Institute/Central and Western States Sections (Joint Meeting): Flammability and Burning Characteristics of Materials and Fuels, San Antonio, Combustion Institute, Pittsburgh, pp. 1–23 (1975). P.K. Raj and H.W. Emmons, “On the Burning of a Large Flammable Vapor Cloud,” Combustion Institute/Central and Western States Sections (Joint Meeting): Flammability and Burning Characteristics of Materials and Fuels, San Antonio, Combustion Institute, Pittsburgh, pp. 1–23 (1975).
118.
Zurück zum Zitat Center for Chemical Process Safety, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVE’s, American Institute for Chemical Engineers, New York, pp. 157–180 (1994). Center for Chemical Process Safety, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVE’s, American Institute for Chemical Engineers, New York, pp. 157–180 (1994).
119.
Zurück zum Zitat A.F. Roberts, “Thermal Radiation Hazards from Releases of LPG from Pressurized Storage,” Fire Safety Journal, 4, pp. 197–212 (1982).CrossRef A.F. Roberts, “Thermal Radiation Hazards from Releases of LPG from Pressurized Storage,” Fire Safety Journal, 4, pp. 197–212 (1982).CrossRef
120.
Zurück zum Zitat K. Hasegawa and K. Sato, “Study on the Fireball Following Steam Explosion of n-Pentane,” Loss Prevention and Safety Promotion, 2, p. 297 (1977). K. Hasegawa and K. Sato, “Study on the Fireball Following Steam Explosion of n-Pentane,” Loss Prevention and Safety Promotion, 2, p. 297 (1977).
121.
Zurück zum Zitat K. Hasegawa and K. Sato, “Experimental Investigation of the Unconfined Vapor Cloud Explosions of Hydrocarbons,” Technical Memorandum 12, Fire Research Institute, Tokyo (1978). K. Hasegawa and K. Sato, “Experimental Investigation of the Unconfined Vapor Cloud Explosions of Hydrocarbons,” Technical Memorandum 12, Fire Research Institute, Tokyo (1978).
122.
Zurück zum Zitat H.C. Hardee and D.O. Lee, “Thermal Hazard from Propane Fireballs,” Transportation Planning and Technology, 2, pp. 121–128 (1973).CrossRef H.C. Hardee and D.O. Lee, “Thermal Hazard from Propane Fireballs,” Transportation Planning and Technology, 2, pp. 121–128 (1973).CrossRef
123.
Zurück zum Zitat R.P. Pape et al., “Calculation of the Intensity of Thermal Radiation from Large Fires,” Loss Prevention Bulletin, 82, pp. 1–11 (1988). R.P. Pape et al., “Calculation of the Intensity of Thermal Radiation from Large Fires,” Loss Prevention Bulletin, 82, pp. 1–11 (1988).
124.
Zurück zum Zitat D.M. Johnson, M.J. Pritchard, and M.J. Wickens, “Large Scale Catastrophic Releases of Flammable Liquids,” Commission of the European Communities Report, Contract No. EV4T.0014.UK(H), Brussels, Belgium (1990). D.M. Johnson, M.J. Pritchard, and M.J. Wickens, “Large Scale Catastrophic Releases of Flammable Liquids,” Commission of the European Communities Report, Contract No. EV4T.0014.UK(H), Brussels, Belgium (1990).
125.
Zurück zum Zitat SFPE, Predicting 1st and 2nd Degree Skin Burns from Thermal Radiation, Society of Fire Protection Engineers, Bethesda, MD (2000). SFPE, Predicting 1st and 2nd Degree Skin Burns from Thermal Radiation, Society of Fire Protection Engineers, Bethesda, MD (2000).
126.
Zurück zum Zitat I. Hymes, W. Boydell, and B. Prescott, Thermal Radiation: Physiological and Pathological Effects, Institution of Chemical Engineers, Rugby, UK (1996). I. Hymes, W. Boydell, and B. Prescott, Thermal Radiation: Physiological and Pathological Effects, Institution of Chemical Engineers, Rugby, UK (1996).
127.
Zurück zum Zitat J. Bull and J. Lawrence, “Thermal Conditions to Produce Skin Burns,” Fire and Materials, 3, 2, pp. 100–105 (1979).CrossRef J. Bull and J. Lawrence, “Thermal Conditions to Produce Skin Burns,” Fire and Materials, 3, 2, pp. 100–105 (1979).CrossRef
128.
Zurück zum Zitat S. Meshulam-Serazon, S. Nachumovsky, D. Ad-El, J. Sulke, and D. Hauben, “Prediction of Morbidity and Mortality on Admission to a Burn Unit,” Plastic and Reconstructive Surgery, 118, 1, pp. 116–120 (2006).CrossRef S. Meshulam-Serazon, S. Nachumovsky, D. Ad-El, J. Sulke, and D. Hauben, “Prediction of Morbidity and Mortality on Admission to a Burn Unit,” Plastic and Reconstructive Surgery, 118, 1, pp. 116–120 (2006).CrossRef
129.
Zurück zum Zitat J. Saffle, B. Davis, and P. Williams et al., “Recent Outcomes in the Treatment of Burn Injury in the United States, a Report from the American Burn Injury Association Patient Registry,” Journal of Burn Care and Rehabilitation, 16, pp. 219–232 (1995). J. Saffle, B. Davis, and P. Williams et al., “Recent Outcomes in the Treatment of Burn Injury in the United States, a Report from the American Burn Injury Association Patient Registry,” Journal of Burn Care and Rehabilitation, 16, pp. 219–232 (1995).
130.
Zurück zum Zitat K. Buettner, “Effects of Extreme Heat and Cold on Human Skin, II. Surface Temperature, Pain and Heat Conductivity in Experiments with Radiant Heat,” Journal of Applied Physics, 3, p. 703 (1951). K. Buettner, “Effects of Extreme Heat and Cold on Human Skin, II. Surface Temperature, Pain and Heat Conductivity in Experiments with Radiant Heat,” Journal of Applied Physics, 3, p. 703 (1951).
131.
Zurück zum Zitat J. Hardy, “The Nature of Pain,” Journal of Chronic Diseases, 4, 1, pp. 22–51 (1956).CrossRef J. Hardy, “The Nature of Pain,” Journal of Chronic Diseases, 4, 1, pp. 22–51 (1956).CrossRef
132.
Zurück zum Zitat N. Bigelow, I. Harrison, H. Goodell, and H.G. Wolf, “Studies on Pain: Quantitative Measurements of Two Pain Sensations of the Skin, with Reference to the Nature of Hyperalgesia of Peripheral Neuritis,” Journal of Clinical Investigation, 24, pp. 503-512 (1945).CrossRef N. Bigelow, I. Harrison, H. Goodell, and H.G. Wolf, “Studies on Pain: Quantitative Measurements of Two Pain Sensations of the Skin, with Reference to the Nature of Hyperalgesia of Peripheral Neuritis,” Journal of Clinical Investigation, 24, pp. 503-512 (1945).CrossRef
133.
Zurück zum Zitat A.M. Stoll and L.C. Greene, “Relationship Between Pain and Tissue Damage Due to Thermal Radiation,” Journal of Applied Physics, 14, pp. 373-382 (1959) A.M. Stoll and L.C. Greene, “Relationship Between Pain and Tissue Damage Due to Thermal Radiation,” Journal of Applied Physics, 14, pp. 373-382 (1959)
134.
Zurück zum Zitat C. Wieczorek and N. Dembsey, “Human Variability Correlations Factor for Use with Simplified Engineering Tools for Predicting Pain and Second Degree Skin Burns,” Journal of Fire Protection Engineering, 2, 2, pp. 88–111 (2001).CrossRef C. Wieczorek and N. Dembsey, “Human Variability Correlations Factor for Use with Simplified Engineering Tools for Predicting Pain and Second Degree Skin Burns,” Journal of Fire Protection Engineering, 2, 2, pp. 88–111 (2001).CrossRef
135.
Zurück zum Zitat A.K. Mehta, F. Wong, and G.C. Williams, “Measurement of Flammability and Burn Potential of Fabrics,” Summary Report to NSF—Grant #GI-31881, Fuels Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA (1973). A.K. Mehta, F. Wong, and G.C. Williams, “Measurement of Flammability and Burn Potential of Fabrics,” Summary Report to NSF—Grant #GI-31881, Fuels Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA (1973).
136.
Zurück zum Zitat K. Dillon, L. Hayes, and G. Blake, “Analysis of Alternative Models for Simulating Thermal Burns,” Journal of Burn Care and Rehabilitation, 12, 2, pp. 177–189 (1991).CrossRef K. Dillon, L. Hayes, and G. Blake, “Analysis of Alternative Models for Simulating Thermal Burns,” Journal of Burn Care and Rehabilitation, 12, 2, pp. 177–189 (1991).CrossRef
137.
Zurück zum Zitat D. Torvi and J. Dale, “A Finite Element Model of Skin Subjected to a Flash Fire,” Transactions of the ASME, 111, pp. 250–255 (1994). D. Torvi and J. Dale, “A Finite Element Model of Skin Subjected to a Flash Fire,” Transactions of the ASME, 111, pp. 250–255 (1994).
138.
Zurück zum Zitat K. Diller and L. Hayes, “A Finite Element Model for Burn Injury in Blood-Perfused Skin,” Transactions of the ASME, 105, pp. 300–307 (1983). K. Diller and L. Hayes, “A Finite Element Model for Burn Injury in Blood-Perfused Skin,” Transactions of the ASME, 105, pp. 300–307 (1983).
139.
Zurück zum Zitat G. Bamford and W. Boydell, “ICARUS: A Code for Evaluating Burn Injuries,” Fire Technology, 31, 4, pp. 307–335 (1995).CrossRef G. Bamford and W. Boydell, “ICARUS: A Code for Evaluating Burn Injuries,” Fire Technology, 31, 4, pp. 307–335 (1995).CrossRef
Metadaten
Titel
Fire Hazard Calculations for Large, Open Hydrocarbon Fires
verfasst von
Craig L. Beyler
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_66