Skip to main content

2016 | OriginalPaper | Buchkapitel

13. Fire Plumes, Flame Height, and Air Entrainment

verfasst von : Gunnar Heskestad

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Practically all fires go through an important, initial stage in which a coherent, buoyant gas stream rises above a localized volume undergoing combustion into surrounding space of essentially uncontaminated air. This stage begins at ignition, continues through a possible smoldering interval, into a flaming interval, and may be said to end prior to flashover. The buoyant gas stream is generally turbulent, except when the fire source is very small. The buoyant flow, including any flames, is referred to as a fire plume.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
A
Defined in Equation 13.6 (m⋅kW–2/5)
B
Buoyancy flux defined in Equation 13.15 (m4⋅s−3)
b
Plume radius (m)
b ΔT
Plume radius to point where ΔT/ΔT 0 = 0.5 (m)
b u
Plume radius to point where u/u 0 = 0.5 (m)
b um
b u at level of maximum gas velocity near flame tip (m)
c
Adjustable constant, Equation 13.35
c p
Specific heat of air at constant pressure (kJ/kg⋅K)
D
Diameter (m)
F
Function (c p , T , ρ, g); see Equation 13.31 (m⋅kW–2/5)
f
Frequency (s−1)
g
Acceleration due to gravity (m/s2)
H c
Actual lower heat of combustion (kJ/kg)
ΔH O
Tewarson’s [44] lower heat of combustion per unit mass of oxygen consumed (kJ/kg)
I
Intermittency
k
Ratio of specific heats, constant-pressure versus constant-volume
L
Mean flame height above base of fire (m)
L B
Buoyancy controlled flame height (m)
L I
Intermittency length scale
L M
Momentum controlled flame height (m)
ṁ ent
Entrained mass flow rate in plume (kg/s)
ṁ ent,L
ent at the mean flame height, L(kg/s)
ṁ f
Mass burning rate (kg/s)
N
Nondimensional parameter defined in Equation 13.4
p s
Pressure in source gas discharge stream (Pa)
p s0
Pressure in source gas reservoir (Pa)
\( \dot{Q} \)
f H c total heat release rate (kW)
\( {\dot{Q}}_c \)
Convective heat release rate (kW)
\( {\dot{Q}}^{*} \)
Radiative heat release rate (kW)
\( {\dot{Q}}^{*} \)
Nondimensional parameter defined in 13.1
R
Radius (m)
r
Actual mass stoichiometric ratio, air to fuel volatiles
R M
Momentum parameter defined in Equation 13.8
T
Mean temperature (K)
T 0
Mean centerline temperature in plume (K)
T ∞
Ambient temperature (K)
T ′
rms temperature fluctuation (K)
T a (z)
Ambient temperature at level z (K)
T a1
Ambient temperature at source level (K)
T L
T 0 at mean flame height (K)
ΔT
T − T , mean temperature rise above ambient (K)
ΔT 0
Value of ΔT on plume centerline (K)
ΔT L
T L  − T (K)
t
Time (s)
t g
Growth time; see Equation 13.49 (s)
t R
Rise time of plume front (s)
t R *
Nondimensional rise time of plume front, see 13.62
u
Mean axial velocity (m/s)
u 0
Mean axial velocity on centerline (m/s)
u 0m
Maximum value of u 0, near flame tip (m/s)
u′
rms velocity fluctuation in axial direction (m/s)
W f
Fire perimeter (m)
z
Height above base of fire (m)
z 0
Height of virtual origin above base of fire (m)
z m
Maximum vertical penetration of plume fluid in stratified ambient (m)
α
Entrainment coefficient
ξ
Nondimensional parameter defined in Equation 13.26
v m
Kinematic viscosity of flame gases at maximum flame temperature (m2 ⋅ s−1)
ρ
Mean density (kg/m3)
ρa1
Ambient density at source level (kg/m3)
ρ fe
Mean density in flames (kg/m3)
ρ s
Density of source gas discharge stream (kg/m3)
ρs0
Density of source gas in reservoir (kg/m3)
ρs∞
Density of source gas at ambient temperature and pressure (kg/m3)
ρ∞
Ambient density (kg/m3)
Δρ
ρ − ρ, mean density deficiency (kg/m3)
σΔT
Plume radius to point where ΔTT 0 = e−1 (m)
σ u
Plume radius to point where u/u 0 = e−1 (m)
Fußnoten
1
As a further aid in assessing variations in A, Tewarson [44], in his Table 3–4.12, lists values of ΔH O for complete combustion of many fuels, the lower heat of combustion per unit mass of oxygen consumed. From these values, H c /r (kJ/kg) can be easily calculated, the lower heat of combustion per unit mass of air (of standard composition) consumed and, hence, the coefficient A.
 
2
For normal atmospheric conditions (T  = 293 K, g = 9.81 m/s2, c p  = 1.00 kJ/kg K, ρ = 1.2 kg/m3), the factor \( 9.1{\left[{T}_{\infty }/\left(\Big(,g{c}_p^2\ {p}_{\infty}^2\right)\right]}^{1/3} \) has the numerical value 25.0 K m5/3 kW–2/3, and the factor 3.4[g/(c p ρ T )]1/3 has the numerical value 1.03 m4/3 s−1 kW–1/3.
 
3
A ratio L/D = 0.02 can be calculated from Equation 13.7 assuming H c /r = 3470 kJ/kg, an average for silicone oils from values reported by Tewarson [63] and assuming a convective heat fraction \( {\dot{Q}}_c/\dot{Q}=0.7 \). If a value of H c /r near the bottom of the reported range [63] is selected, 3230 kJ/kg, the observed value L/D = 0.14 is reproduced; slight changes in the assumed convective fraction will also reproduce the measured value.
 
4
Without specific knowledge, \( {\dot{Q}}_c/\dot{Q} \) may usually be assumed at 0.7. However, methyl alcohol produces a fire of low luminosity and radiation, for which \( {\dot{Q}}_c/\dot{Q}=0.8 \) is a good estimate.
 
5
In addition to convective heating, which depends on gas temperature and velocity, radiative heating would also be important in such cases and might even dominate over convective heating if the structure is immersed in flames.
 
Literatur
1.
Zurück zum Zitat Rehm, R.G, Baum, H.R., “The Equations of Motion for Thermally Driven, Buoyant Flows,” J. Res. Nat. Bur. Stand. 83, pp. 297–308 (1978).CrossRefMATH Rehm, R.G, Baum, H.R., “The Equations of Motion for Thermally Driven, Buoyant Flows,” J. Res. Nat. Bur. Stand. 83, pp. 297–308 (1978).CrossRefMATH
2.
Zurück zum Zitat H.R. Baum, K.B. McGrattan, and R.G. Rehm, “Mathematical Modelling and Computer Simulation of Fire Phenomena,” Fire Safety Science-Proceedings Fourth International Symposium, International Association of Fire Safety Science, London, UK (ed. T. Kashiwagi), pp. 185–193 (1994). H.R. Baum, K.B. McGrattan, and R.G. Rehm, “Mathematical Modelling and Computer Simulation of Fire Phenomena,” Fire Safety Science-Proceedings Fourth International Symposium, International Association of Fire Safety Science, London, UK (ed. T. Kashiwagi), pp. 185–193 (1994).
3.
Zurück zum Zitat T.G. Ma and J.G. Quintiere, “Numerical Simulation of Axi-Symmetric Fire Plumes: Accuracy and Limitations,” Fire Safety Journal, 38, pp. 467–492 (2003).CrossRef T.G. Ma and J.G. Quintiere, “Numerical Simulation of Axi-Symmetric Fire Plumes: Accuracy and Limitations,” Fire Safety Journal, 38, pp. 467–492 (2003).CrossRef
4.
Zurück zum Zitat Y. Xin, J.P. Gore, K.B. McGrattan, R.G. Rehm, and H.R. Baum, “Fire Dynamics Simulation of a Turbulent Buoyant Flame Using Mixture-Fraction-Based Combustion Models,” Combustion and Flame, 141, pp. 329–335 (2005).CrossRef Y. Xin, J.P. Gore, K.B. McGrattan, R.G. Rehm, and H.R. Baum, “Fire Dynamics Simulation of a Turbulent Buoyant Flame Using Mixture-Fraction-Based Combustion Models,” Combustion and Flame, 141, pp. 329–335 (2005).CrossRef
5.
Zurück zum Zitat Xin, Y., Filatyev, S.A., Biswas, K., Gore, J.P., Rehm, R.G., and Baum, H.R., “Fire Dynamics Simulations of a One-Meter Diameter Methane Fire,” Combustion and Flame, 153, pp.499–509 (2008). Xin, Y., Filatyev, S.A., Biswas, K., Gore, J.P., Rehm, R.G., and Baum, H.R., “Fire Dynamics Simulations of a One-Meter Diameter Methane Fire,” Combustion and Flame, 153, pp.499–509 (2008).
6.
Zurück zum Zitat Tieszen, S.R., O’Hern, T.J., Schefer, R.W., Weckman, E.J. and Blanchat, T.K., “Experimental Study of the Flow Field In and Around a One Meter Diameter Methane Fire,” Combustion and Flame, 129, pp. 378–391 (2002).CrossRef Tieszen, S.R., O’Hern, T.J., Schefer, R.W., Weckman, E.J. and Blanchat, T.K., “Experimental Study of the Flow Field In and Around a One Meter Diameter Methane Fire,” Combustion and Flame, 129, pp. 378–391 (2002).CrossRef
9.
Zurück zum Zitat Wang, Y, Chatterjee, P. and de Ris, J.L., “Large Eddy Simulation of Fire Plumes,” Proceedings of the Combustion Institute, 33, pp. 2473–2480 (2011).CrossRef Wang, Y, Chatterjee, P. and de Ris, J.L., “Large Eddy Simulation of Fire Plumes,” Proceedings of the Combustion Institute, 33, pp. 2473–2480 (2011).CrossRef
10.
Zurück zum Zitat Olenick, S.M. and Carpenter, D. J., “An Updated International Survey of Computer Models for Fire and Smoke,” Journal of Fire Protection Engineering, 13, pp. 87–110 (2003).CrossRef Olenick, S.M. and Carpenter, D. J., “An Updated International Survey of Computer Models for Fire and Smoke,” Journal of Fire Protection Engineering, 13, pp. 87–110 (2003).CrossRef
11.
Zurück zum Zitat G. Heskestad, “Engineering Relations for Fire Plumes,” Fire Safety Journal, 7, pp. 25–32 (1984).CrossRef G. Heskestad, “Engineering Relations for Fire Plumes,” Fire Safety Journal, 7, pp. 25–32 (1984).CrossRef
12.
Zurück zum Zitat B.J. McCaffrey, “Purely Buoyant Diffusion Flames: Some Experimental Results,” NBSIR 79–1910, National Bureau of Standards, Washington, DC (1979). B.J. McCaffrey, “Purely Buoyant Diffusion Flames: Some Experimental Results,” NBSIR 79–1910, National Bureau of Standards, Washington, DC (1979).
13.
Zurück zum Zitat G. Cox and R. Chitty, “A Study of the Deterministic Properties of Unbounded Fire Plumes,” Combustion and Flame, 39, pp. 191–209 (1980).CrossRef G. Cox and R. Chitty, “A Study of the Deterministic Properties of Unbounded Fire Plumes,” Combustion and Flame, 39, pp. 191–209 (1980).CrossRef
14.
Zurück zum Zitat G. Heskestad, “Peak Gas Velocities and Flame Heights of Buoyancy-Controlled Turbulent Diffusion Flames,” 18th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 951–960 (1981). G. Heskestad, “Peak Gas Velocities and Flame Heights of Buoyancy-Controlled Turbulent Diffusion Flames,” 18th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 951–960 (1981).
15.
Zurück zum Zitat H.C. Kung and P. Stavrianidis, “Buoyant Plumes of Large-Scale Pool Fires,” 19th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 905–912 (1983). H.C. Kung and P. Stavrianidis, “Buoyant Plumes of Large-Scale Pool Fires,” 19th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 905–912 (1983).
16.
Zurück zum Zitat E. Gengembre, P. Cambray, D. Karmed, and J.C. Bellet, “Turbulent Diffusion Flames with Large Buoyancy Effects,” Combustion Science and Technology, 41, pp. 55–67 (1984).CrossRef E. Gengembre, P. Cambray, D. Karmed, and J.C. Bellet, “Turbulent Diffusion Flames with Large Buoyancy Effects,” Combustion Science and Technology, 41, pp. 55–67 (1984).CrossRef
17.
Zurück zum Zitat G. Heskestad, “A Fire Products Collector for Calorimetry into the MW Range,” Report OC2E1.RA, Factory Mutual Research Corp., Norwood, MA (1981). G. Heskestad, “A Fire Products Collector for Calorimetry into the MW Range,” Report OC2E1.RA, Factory Mutual Research Corp., Norwood, MA (1981).
18.
Zurück zum Zitat A. Tewarson, “Physico-Chemical and Combustion/Pyrolysis Properties of Polymeric Materials,” NBS-GGR-80-295, National Bureau of Standards, Washington, DC (1982). A. Tewarson, “Physico-Chemical and Combustion/Pyrolysis Properties of Polymeric Materials,” NBS-GGR-80-295, National Bureau of Standards, Washington, DC (1982).
19.
Zurück zum Zitat C.L. Beyler, “Fire Hazard Calculations for Large, Open Hydrocarbon Fires,” The SFPE Handbook of Fire Protection Engineering, 3rd ed., Society of Fire Protection Engineering and National Fire Protection Association, Quincy, MA (2002). C.L. Beyler, “Fire Hazard Calculations for Large, Open Hydrocarbon Fires,” The SFPE Handbook of Fire Protection Engineering, 3rd ed., Society of Fire Protection Engineering and National Fire Protection Association, Quincy, MA (2002).
20.
Zurück zum Zitat B. Hägglund and L.E. Persson, “The Heat Radiation from Petroleum Fires,” Försvarets Forskningsanstalt, Stockholm, FDA Report C20126-D6(A3) (1976). B. Hägglund and L.E. Persson, “The Heat Radiation from Petroleum Fires,” Försvarets Forskningsanstalt, Stockholm, FDA Report C20126-D6(A3) (1976).
21.
Zurück zum Zitat F. Tamanini, “Direct Measurements of the Longitudinal Variation of Burning Rate and Product Yield in Turbulent Diffusion Flames,” Combustion and Flame, 51, pp. 231–243 (1983).CrossRef F. Tamanini, “Direct Measurements of the Longitudinal Variation of Burning Rate and Product Yield in Turbulent Diffusion Flames,” Combustion and Flame, 51, pp. 231–243 (1983).CrossRef
22.
Zurück zum Zitat E.E. Zukoski, T. Kubota, and B. Cetegen, “Entrainment in Fire Plumes,” Fire Safety Journal, 3, pp. 107–121 (1980–81). E.E. Zukoski, T. Kubota, and B. Cetegen, “Entrainment in Fire Plumes,” Fire Safety Journal, 3, pp. 107–121 (1980–81).
23.
Zurück zum Zitat E.E. Zukoski, B.M. Cetegen, and T. Kubota, “Visible Structure of Buoyant Diffusion Flames,” 20th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 361–366 (1985). E.E. Zukoski, B.M. Cetegen, and T. Kubota, “Visible Structure of Buoyant Diffusion Flames,” 20th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 361–366 (1985).
24.
Zurück zum Zitat B. McCaffrey, “Flame Height,” The SFPE Handbook of Fire Protection Engineering, 2nd ed., Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA, pp. 2-1–2-8 (1995). B. McCaffrey, “Flame Height,” The SFPE Handbook of Fire Protection Engineering, 2nd ed., Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA, pp. 2-1–2-8 (1995).
25.
Zurück zum Zitat H.A. Becker and D. Liang, “Visible Length of Vertical Free Turbulent Diffusion Flames,” Combustion and Flame, 32, pp. 115–137 (1978).CrossRef H.A. Becker and D. Liang, “Visible Length of Vertical Free Turbulent Diffusion Flames,” Combustion and Flame, 32, pp. 115–137 (1978).CrossRef
26.
Zurück zum Zitat G. Cox and R. Chitty, “Some Source-Dependent Effects of Unbounded Fires,” Combustion and Flame, 60, pp. 219–232 (1985).CrossRef G. Cox and R. Chitty, “Some Source-Dependent Effects of Unbounded Fires,” Combustion and Flame, 60, pp. 219–232 (1985).CrossRef
27.
Zurück zum Zitat G. Heskestad, “Luminous Heights of Turbulent Diffusion Flames,” Fire Safety Journal, 5, pp. 103–108 (1983).CrossRef G. Heskestad, “Luminous Heights of Turbulent Diffusion Flames,” Fire Safety Journal, 5, pp. 103–108 (1983).CrossRef
28.
Zurück zum Zitat G.T. Kalghatgi, “Lift-Off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air,” Combustion Science and Technology, 41, pp. 17–29 (1984).CrossRef G.T. Kalghatgi, “Lift-Off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air,” Combustion Science and Technology, 41, pp. 17–29 (1984).CrossRef
29.
Zurück zum Zitat F.R. Steward, “Prediction of the Height of Turbulent Diffusion Buoyant Flames,” Combustion Science and Technology, 2, pp. 203–212 (1970).CrossRef F.R. Steward, “Prediction of the Height of Turbulent Diffusion Buoyant Flames,” Combustion Science and Technology, 2, pp. 203–212 (1970).CrossRef
30.
Zurück zum Zitat P.H. Thomas, “The Size of Flames from Natural Fires,” Ninth Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 844–859 (1963). P.H. Thomas, “The Size of Flames from Natural Fires,” Ninth Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 844–859 (1963).
31.
Zurück zum Zitat W.R. Hawthorne, D.S. Weddel, and H.C. Hottel, “Mixing and Combustion in Turbulent Gas Jets,” Third Symposium on Combustion, Williams and Wilkins, Baltimore, pp. 288–300 (1949). W.R. Hawthorne, D.S. Weddel, and H.C. Hottel, “Mixing and Combustion in Turbulent Gas Jets,” Third Symposium on Combustion, Williams and Wilkins, Baltimore, pp. 288–300 (1949).
32.
Zurück zum Zitat E.E. Zukoski, “Fluid Dynamic Aspects of Room Fires,” Fire Safety Science—Proceedings of the First International Symposium, Hemisphere, New York, pp. 1–30 (1984). E.E. Zukoski, “Fluid Dynamic Aspects of Room Fires,” Fire Safety Science—Proceedings of the First International Symposium, Hemisphere, New York, pp. 1–30 (1984).
33.
Zurück zum Zitat E.E. Zukoski, “Convective Flows Associated with Room Fires,” Semi-Annual Progress Report to National Science Foundation, California Institute of Technology, Pasadena (1975). E.E. Zukoski, “Convective Flows Associated with Room Fires,” Semi-Annual Progress Report to National Science Foundation, California Institute of Technology, Pasadena (1975).
34.
Zurück zum Zitat G. Heskestad, “On Q* and the Dynamics of Turbulent Diffusion Flames,” Fire Safety Journal, 30, pp. 215–227 (1998).CrossRef G. Heskestad, “On Q* and the Dynamics of Turbulent Diffusion Flames,” Fire Safety Journal, 30, pp. 215–227 (1998).CrossRef
35.
Zurück zum Zitat G. Heskestad, “A Reduced-Scale Mass Fire Experiment,” Combustion and Flame, 83, pp. 293–301 (1991).CrossRef G. Heskestad, “A Reduced-Scale Mass Fire Experiment,” Combustion and Flame, 83, pp. 293–301 (1991).CrossRef
36.
Zurück zum Zitat H. Vienneau, “Mixing Controlled Flame Heights from Circular Jets,” BSc Thesis, Dept. Chem. Eng.,Univ. New Brunswick, Fredericton, N.B., 1964. H. Vienneau, “Mixing Controlled Flame Heights from Circular Jets,” BSc Thesis, Dept. Chem. Eng.,Univ. New Brunswick, Fredericton, N.B., 1964.
37.
Zurück zum Zitat M.V. D’Souza and J.H. McGuire, “ASTM E-84 and the Flammability of Foamed Thermosetting Plastics,” Fire Technology, 13, p 85–94 (1977).CrossRef M.V. D’Souza and J.H. McGuire, “ASTM E-84 and the Flammability of Foamed Thermosetting Plastics,” Fire Technology, 13, p 85–94 (1977).CrossRef
38.
Zurück zum Zitat V.I. Blinov and G.N. Khudiakov, “Certain Laws Governing Diffusive Burning of Liquids,” Dokl. Acad. Nauk SSSR, 113, p 1094–1098 (1957). V.I. Blinov and G.N. Khudiakov, “Certain Laws Governing Diffusive Burning of Liquids,” Dokl. Acad. Nauk SSSR, 113, p 1094–1098 (1957).
39.
Zurück zum Zitat B. Hägglund and L.E. Persson, “The Heat Radiation from Petroleum Fires,” Försvarets Forskningsanstalt, Stockholm, FDA Rep. C20126-D6 (A3), 1976. B. Hägglund and L.E. Persson, “The Heat Radiation from Petroleum Fires,” Försvarets Forskningsanstalt, Stockholm, FDA Rep. C20126-D6 (A3), 1976.
40.
Zurück zum Zitat B.D. Wood, P.L. Blackshear, Jr. and E.R.G. Eckert, “Mass Fire Model: An Experimental study of the Heat Transfer to Liquid Fuel Burning from a Sand-Filled Pan Burner,” Combust. Sci. Technol., 4, p. 113 (1971).CrossRef B.D. Wood, P.L. Blackshear, Jr. and E.R.G. Eckert, “Mass Fire Model: An Experimental study of the Heat Transfer to Liquid Fuel Burning from a Sand-Filled Pan Burner,” Combust. Sci. Technol., 4, p. 113 (1971).CrossRef
41.
Zurück zum Zitat K.S. Mudan, “Thermal Radiation Hazards from Hydrocarbon Pool Fires,” Prog. Energy Combust. Sci., 10, pp. 59–80 (1984).CrossRef K.S. Mudan, “Thermal Radiation Hazards from Hydrocarbon Pool Fires,” Prog. Energy Combust. Sci., 10, pp. 59–80 (1984).CrossRef
42.
Zurück zum Zitat G. Heskestad, “Flame Heights of Fuel Arrays with Combustion in Depth,” Fire Safety Science—Proceedings of the Fifth International Symposium, International Association for Fire Safety Science, pp. 427–438 (1998). G. Heskestad, “Flame Heights of Fuel Arrays with Combustion in Depth,” Fire Safety Science—Proceedings of the Fifth International Symposium, International Association for Fire Safety Science, pp. 427–438 (1998).
43.
Zurück zum Zitat Huggett, C., “Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements,” Fire Mater. 4, pp. 61–65 (1980).CrossRef Huggett, C., “Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements,” Fire Mater. 4, pp. 61–65 (1980).CrossRef
44.
Zurück zum Zitat Tewarson, A.,” Generation of Heat and Gaseous, Liquid, and Solid Products in Fires,” The SFPE Handbook of Fire Protection Engineering, 4th ed, Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA, pp. 3-109–3-194 (2008). Tewarson, A.,” Generation of Heat and Gaseous, Liquid, and Solid Products in Fires,” The SFPE Handbook of Fire Protection Engineering, 4th ed, Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA, pp. 3-109–3-194 (2008).
45.
Zurück zum Zitat B.S. Grove and J.G. Quintiere, “Calculating Entrainment and Flame Height in Fire Plumes of Axisymmetric and Infinite Line Geometries,” Journal of Fire Protection Engineering, 12, pp. 117–137 (2002).CrossRef B.S. Grove and J.G. Quintiere, “Calculating Entrainment and Flame Height in Fire Plumes of Axisymmetric and Infinite Line Geometries,” Journal of Fire Protection Engineering, 12, pp. 117–137 (2002).CrossRef
46.
Zurück zum Zitat Newman, J.S. and Wieczorek, C.J., “Chemical Flame Heights,” Fire Safety Journal, 39, pp. 375–382 (2004).CrossRef Newman, J.S. and Wieczorek, C.J., “Chemical Flame Heights,” Fire Safety Journal, 39, pp. 375–382 (2004).CrossRef
47.
Zurück zum Zitat de Ris, J, Wu, P. and Heskestad, G., “Radiation Fire Modeling,” Proceedings of the Combustion Institute, 118, pp. 51–60 (1999). de Ris, J, Wu, P. and Heskestad, G., “Radiation Fire Modeling,” Proceedings of the Combustion Institute, 118, pp. 51–60 (1999).
48.
Zurück zum Zitat T.R. Blake and M. McDonald, “An Examination of Flame Length Data from Vertical Turbulent Diffusion Flames,” Combustion and Flame, 94, pp. 426–432 (1993).CrossRef T.R. Blake and M. McDonald, “An Examination of Flame Length Data from Vertical Turbulent Diffusion Flames,” Combustion and Flame, 94, pp. 426–432 (1993).CrossRef
49.
Zurück zum Zitat T.R. Blake and M. McDonald, “Similitude and the Interpretation of Turbulent Diffusion Flames,” Combustion and Flame, 101, pp. 175–184 (1995).CrossRef T.R. Blake and M. McDonald, “Similitude and the Interpretation of Turbulent Diffusion Flames,” Combustion and Flame, 101, pp. 175–184 (1995).CrossRef
50.
Zurück zum Zitat M.A. Delichatsios, “Transition from Momentum to Buoyancy-Controlled Turbulent Jet Diffusion Flames and Flame Height Relationships,” Combustion and Flame, 33, pp. 349–364 (1993).CrossRef M.A. Delichatsios, “Transition from Momentum to Buoyancy-Controlled Turbulent Jet Diffusion Flames and Flame Height Relationships,” Combustion and Flame, 33, pp. 349–364 (1993).CrossRef
51.
Zurück zum Zitat H.A. Becker and S. Yamazaki, “Entrainment, Momentum Flux and Temperature in Vertical Free Turbulent Diffusion Flames,” Combustion and Flame, 33, pp. 123–149 (1978).CrossRef H.A. Becker and S. Yamazaki, “Entrainment, Momentum Flux and Temperature in Vertical Free Turbulent Diffusion Flames,” Combustion and Flame, 33, pp. 123–149 (1978).CrossRef
52.
Zurück zum Zitat N. Peters and J. Göttgens, “Scaling of Buoyant Turbulent Jet Diffusion Flames,” Combustion and Flame, 85, pp. 206–214 (1991).CrossRef N. Peters and J. Göttgens, “Scaling of Buoyant Turbulent Jet Diffusion Flames,” Combustion and Flame, 85, pp. 206–214 (1991).CrossRef
53.
Zurück zum Zitat G. Heskestad, “Turbulent Jet Diffusion Flames: Consolidation of Flame Height Data,” Combustion and Flame, 118, pp. 51–60 (1999).CrossRef G. Heskestad, “Turbulent Jet Diffusion Flames: Consolidation of Flame Height Data,” Combustion and Flame, 118, pp. 51–60 (1999).CrossRef
54.
Zurück zum Zitat A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1, The Ronald Press Company, New York (1953). A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1, The Ronald Press Company, New York (1953).
55.
Zurück zum Zitat W. Schmidt, “Turbulente Ausbreitung eines Stromes erhitzer Luft,” Zeitschrift für Angewandte Mathematik und Mechanik, 21, pp. 265–278 (1941).CrossRefMATH W. Schmidt, “Turbulente Ausbreitung eines Stromes erhitzer Luft,” Zeitschrift für Angewandte Mathematik und Mechanik, 21, pp. 265–278 (1941).CrossRefMATH
56.
Zurück zum Zitat H. Rouse, C.S. Yih, and H.W. Humphreys, “Gravitational Convection from a Boundary Source,” Tellus, 4, pp. 201–210 (1952).CrossRef H. Rouse, C.S. Yih, and H.W. Humphreys, “Gravitational Convection from a Boundary Source,” Tellus, 4, pp. 201–210 (1952).CrossRef
57.
Zurück zum Zitat B.R. Morton, G.I. Taylor, and J.S. Turner, “Turbulent Gravitational Convection from Maintained and Instantaneous Sources,” Proceedings of the Royal Society A, 234, pp. 1–23 (1956).MathSciNetCrossRefMATH B.R. Morton, G.I. Taylor, and J.S. Turner, “Turbulent Gravitational Convection from Maintained and Instantaneous Sources,” Proceedings of the Royal Society A, 234, pp. 1–23 (1956).MathSciNetCrossRefMATH
59.
Zurück zum Zitat B.R. Morton, “Modeling of Fire Plumes,” 10th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 973–982 (1965). B.R. Morton, “Modeling of Fire Plumes,” 10th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 973–982 (1965).
60.
Zurück zum Zitat W.K. George, R.L. Alpert, and F. Tamanini, “Turbulence Measurements in an Axisymmetric Buoyant Plume,” International Journal of Heat and Mass Transfer, 20, pp. 1145–1154 (1977).CrossRef W.K. George, R.L. Alpert, and F. Tamanini, “Turbulence Measurements in an Axisymmetric Buoyant Plume,” International Journal of Heat and Mass Transfer, 20, pp. 1145–1154 (1977).CrossRef
61.
Zurück zum Zitat S. Yokoi, “Study on the Prevention of Fire-Spread Caused by Hot Upward Current,” Report No. 34, Building Research Institute, Japan (1960). S. Yokoi, “Study on the Prevention of Fire-Spread Caused by Hot Upward Current,” Report No. 34, Building Research Institute, Japan (1960).
62.
Zurück zum Zitat G. Heskestad, “Fire Plume Simulator,” Report 18792, Factory Mutual Research Corp., Norwood, MA (1974). G. Heskestad, “Fire Plume Simulator,” Report 18792, Factory Mutual Research Corp., Norwood, MA (1974).
63.
Zurück zum Zitat A. Tewarson, “Experimental Evaluation of Flammability Parameters of Polymeric Materials,” in Flame-Retardant Polymeric Materials, Plenum, New York, pp. 97–153 (1982). A. Tewarson, “Experimental Evaluation of Flammability Parameters of Polymeric Materials,” in Flame-Retardant Polymeric Materials, Plenum, New York, pp. 97–153 (1982).
64.
Zurück zum Zitat G. Heskestad, “Note on Maximum Rise of Fire Plumes in Temperature-Stratified Ambients,” Fire Safety Journal, 15, pp. 271–276 (1989).CrossRef G. Heskestad, “Note on Maximum Rise of Fire Plumes in Temperature-Stratified Ambients,” Fire Safety Journal, 15, pp. 271–276 (1989).CrossRef
65.
Zurück zum Zitat G. Heskestad, “Dynamics of the Fire Plume,” Philosophical Transactions of the Royal Society of London A, 356, pp. 2815–2833 (1998).CrossRef G. Heskestad, “Dynamics of the Fire Plume,” Philosophical Transactions of the Royal Society of London A, 356, pp. 2815–2833 (1998).CrossRef
66.
Zurück zum Zitat G. Heskestad, “Fire Plume Behavior in Temperature Stratified Ambients,” Combustion Science and Technology, 106, pp. 207–228 (1995).CrossRef G. Heskestad, “Fire Plume Behavior in Temperature Stratified Ambients,” Combustion Science and Technology, 106, pp. 207–228 (1995).CrossRef
67.
Zurück zum Zitat J-I. Watanabe and T. Tanaka, “Experimental Investigation into Penetration of a Weak Fire Plume into a Hot Upper Layer,” Journal of Fire Sciences, 22, pp. 405–420 (2004). J-I. Watanabe and T. Tanaka, “Experimental Investigation into Penetration of a Weak Fire Plume into a Hot Upper Layer,” Journal of Fire Sciences, 22, pp. 405–420 (2004).
68.
Zurück zum Zitat G. Heskestad, “Virtual Origins of Fire Plumes,” Fire Safety Journal, 5, pp. 109–114 (1983).CrossRef G. Heskestad, “Virtual Origins of Fire Plumes,” Fire Safety Journal, 5, pp. 109–114 (1983).CrossRef
69.
Zurück zum Zitat Y. Hasemi and T. Tokunaga, “Flame Geometry Effects on the Buoyant Plumes from Turbulent Diffusion Flames,” Fire Science and Technology, 4, pp. 15–26 (1984).CrossRef Y. Hasemi and T. Tokunaga, “Flame Geometry Effects on the Buoyant Plumes from Turbulent Diffusion Flames,” Fire Science and Technology, 4, pp. 15–26 (1984).CrossRef
70.
Zurück zum Zitat B.M. Cetegen, E.E. Zukoski, and T. Kubota, “Entrainment in the Near and Far Field of Fire Plumes,” Combustion Science and Technology, 39, pp. 305–331 (1984).CrossRef B.M. Cetegen, E.E. Zukoski, and T. Kubota, “Entrainment in the Near and Far Field of Fire Plumes,” Combustion Science and Technology, 39, pp. 305–331 (1984).CrossRef
71.
Zurück zum Zitat C.-S. Yih, “Free Convection Due to a Point Source of Heat,” Proceedings of the U.S. National Congress of Applied Mechanics, New York, pp. 941–947 (1952). C.-S. Yih, “Free Convection Due to a Point Source of Heat,” Proceedings of the U.S. National Congress of Applied Mechanics, New York, pp. 941–947 (1952).
72.
Zurück zum Zitat B.M. Cetegen, E.E. Zukoski, and T. Kubota, “Entrainment and Flame Geometry of Fire Plumes,” Report G8-9014, California Institute of Technology, Daniel and Florence Guggenheim Jet Propulsion Center, Pasadena (1982). B.M. Cetegen, E.E. Zukoski, and T. Kubota, “Entrainment and Flame Geometry of Fire Plumes,” Report G8-9014, California Institute of Technology, Daniel and Florence Guggenheim Jet Propulsion Center, Pasadena (1982).
73.
Zurück zum Zitat G. Heskestad, “Fire Plume Air Entrainment According to Two Competing Assumptions,” 21st Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 111–120 (1986). G. Heskestad, “Fire Plume Air Entrainment According to Two Competing Assumptions,” 21st Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 111–120 (1986).
74.
Zurück zum Zitat C.L. Beyler, Development and Burning of a Layer of Products of Incomplete Combustion Generated by a Buoyant Diffusion Flame, Ph.D. Thesis, Harvard University, Cambridge, MA (1983). C.L. Beyler, Development and Burning of a Layer of Products of Incomplete Combustion Generated by a Buoyant Diffusion Flame, Ph.D. Thesis, Harvard University, Cambridge, MA (1983).
75.
Zurück zum Zitat M.A. Delichatsios and L. Orloff, “Entrainment Measurements in Turbulent Buoyant Jet Flames and Implications for Modeling,” 20th Symposium on Combustion, Combustion Institute, Pittsburgh, PA (1985). M.A. Delichatsios and L. Orloff, “Entrainment Measurements in Turbulent Buoyant Jet Flames and Implications for Modeling,” 20th Symposium on Combustion, Combustion Institute, Pittsburgh, PA (1985).
76.
Zurück zum Zitat M.A. Delichatsios, “Air Entrainment into Buoyant Jet Flames and Pool Fires,” The SFPE Handbook of Fire Protection Engineering, 2nd ed., Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA, pp. 2-20–2-31 (1995). M.A. Delichatsios, “Air Entrainment into Buoyant Jet Flames and Pool Fires,” The SFPE Handbook of Fire Protection Engineering, 2nd ed., Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA, pp. 2-20–2-31 (1995).
77.
Zurück zum Zitat J.Q. Quintiere and B.S. Grove, “A Unified Analysis for Fire Plumes,” 27th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 2757–2766 (1998). J.Q. Quintiere and B.S. Grove, “A Unified Analysis for Fire Plumes,” 27th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 2757–2766 (1998).
78.
Zurück zum Zitat G. Heskestad and T. Hamada, “Ceiling Jets of Strong Fire Plumes,” Fire Safety Journal, 21, pp. 69–82 (1993).CrossRef G. Heskestad and T. Hamada, “Ceiling Jets of Strong Fire Plumes,” Fire Safety Journal, 21, pp. 69–82 (1993).CrossRef
79.
Zurück zum Zitat P.H. Thomas, P.L. Hinkley, C.R. Theobald, and D.L. Sims, “Investigation into the Flow of Hot Gases in Roof Venting,” Fire Technical Paper No. 7, H. M. Stationery Office, Joint Fire Research Organization, London (1963). P.H. Thomas, P.L. Hinkley, C.R. Theobald, and D.L. Sims, “Investigation into the Flow of Hot Gases in Roof Venting,” Fire Technical Paper No. 7, H. M. Stationery Office, Joint Fire Research Organization, London (1963).
80.
Zurück zum Zitat P.L. Hinkley, “Rates of ‘Production’ of Hot Gases in Roof Venting Experiments,” Fire Safety Journal, 10, pp. 57–65 (1986).CrossRef P.L. Hinkley, “Rates of ‘Production’ of Hot Gases in Roof Venting Experiments,” Fire Safety Journal, 10, pp. 57–65 (1986).CrossRef
81.
Zurück zum Zitat M.A. Delichatsios, “Fire Growth Rates in Wood Cribs,” Combustion and Flame, 27, pp. 267–278 (1976).CrossRef M.A. Delichatsios, “Fire Growth Rates in Wood Cribs,” Combustion and Flame, 27, pp. 267–278 (1976).CrossRef
82.
Zurück zum Zitat Zukoski, E.E., Kubota, T. and Cetegen, B., “Entrainment in the Near Field of Fire Plumes,” California Institute of Technology, Daniel and Florence Guggenheim Jet Propulsion Center, August 1981 Zukoski, E.E., Kubota, T. and Cetegen, B., “Entrainment in the Near Field of Fire Plumes,” California Institute of Technology, Daniel and Florence Guggenheim Jet Propulsion Center, August 1981
83.
Zurück zum Zitat D.J. Rasbash, Z.W. Rogowski, and G.W.V. Stark, “Properties of Fires of Liquids,” Fuel, 35, pp. 94–107 (1956). D.J. Rasbash, Z.W. Rogowski, and G.W.V. Stark, “Properties of Fires of Liquids,” Fuel, 35, pp. 94–107 (1956).
84.
Zurück zum Zitat B.M. Cetegen and T.A. Ahmed, “Experiments on the Periodic instability of Buoyant Plumes and Pool Fires,” Combustion and Flame, 23, pp. 157–184 (1993).CrossRef B.M. Cetegen and T.A. Ahmed, “Experiments on the Periodic instability of Buoyant Plumes and Pool Fires,” Combustion and Flame, 23, pp. 157–184 (1993).CrossRef
85.
Zurück zum Zitat G.M. Byram and R.M. Nelson, Jr., “The Modelling of Pulsating Fires,” Fire Technology, 6, pp. 102–110 (1970).CrossRef G.M. Byram and R.M. Nelson, Jr., “The Modelling of Pulsating Fires,” Fire Technology, 6, pp. 102–110 (1970).CrossRef
86.
Zurück zum Zitat T. Tanaka, T. Fujita, and J. Yamaguchi, “Investigation into Rise Time of Buoyant Fire Plume Fronts,” International Journal of Engineering Performance-Based Fire Codes, 2, pp. 14–25 (2000). T. Tanaka, T. Fujita, and J. Yamaguchi, “Investigation into Rise Time of Buoyant Fire Plume Fronts,” International Journal of Engineering Performance-Based Fire Codes, 2, pp. 14–25 (2000).
87.
Zurück zum Zitat G. Heskestad, “Rise of Plume Front from Starting Fires,” Fire Safety Journal, 36, pp. 201–204 (2001).CrossRef G. Heskestad, “Rise of Plume Front from Starting Fires,” Fire Safety Journal, 36, pp. 201–204 (2001).CrossRef
88.
Zurück zum Zitat L.H. Hu, Y.Z. Li, R. Huo, L. Yi, and C.L. Shi, “Experimental Studies on the Rise-Time of Buoyant Fire Plume Fronts Induced by Pool Fires,” Journal of Fire Sciences, 22 pp. 69–84 (2004).CrossRef L.H. Hu, Y.Z. Li, R. Huo, L. Yi, and C.L. Shi, “Experimental Studies on the Rise-Time of Buoyant Fire Plume Fronts Induced by Pool Fires,” Journal of Fire Sciences, 22 pp. 69–84 (2004).CrossRef
89.
Zurück zum Zitat Y. Hasemi and T. Tokunaga, “Some Experimental Aspects of Turbulent Diffusion Flames and Buoyant Plumes from Fire Sources Against a Wall and in a Corner of Walls,” Combustion Science and Technology, 40, pp. 1–17 (1984). Y. Hasemi and T. Tokunaga, “Some Experimental Aspects of Turbulent Diffusion Flames and Buoyant Plumes from Fire Sources Against a Wall and in a Corner of Walls,” Combustion Science and Technology, 40, pp. 1–17 (1984).
90.
Zurück zum Zitat J. Back, C. Beyler, and P. DiNenno, “Wall Incident Heat Flux Distributions Resulting from Adjacent Flames,” Proceedings of the Fourth International Symposium on Fire Safety Science, International Association for Fire Safety Science, London, UK, pp. 241–252 (1994). J. Back, C. Beyler, and P. DiNenno, “Wall Incident Heat Flux Distributions Resulting from Adjacent Flames,” Proceedings of the Fourth International Symposium on Fire Safety Science, International Association for Fire Safety Science, London, UK, pp. 241–252 (1994).
91.
Zurück zum Zitat T. Mizuno and K. Kawagoe, “Burning Rate of Upholstered Chairs in the Center, Alongside a Wall and in a Corner of a Compartment,” Fire Safety Science—Proceedings of the First International Symposium, Hemisphere, New York, pp. 849–857 (1984). T. Mizuno and K. Kawagoe, “Burning Rate of Upholstered Chairs in the Center, Alongside a Wall and in a Corner of a Compartment,” Fire Safety Science—Proceedings of the First International Symposium, Hemisphere, New York, pp. 849–857 (1984).
92.
Zurück zum Zitat M.A. Kokkala, “Characteristics of a Flame in an Open Corner of Walls,” Interflam 1993, Interscience Communications Limited, London (1993). M.A. Kokkala, “Characteristics of a Flame in an Open Corner of Walls,” Interflam 1993, Interscience Communications Limited, London (1993).
93.
Zurück zum Zitat M. Poreh and G. Garrad, “A Study of Wall and Corner Fire Plumes,” Fire Safety Journal, 34, pp. 81–98 (2000).CrossRef M. Poreh and G. Garrad, “A Study of Wall and Corner Fire Plumes,” Fire Safety Journal, 34, pp. 81–98 (2000).CrossRef
94.
Zurück zum Zitat B.Y. Lattimer and U. Sorathia, “Thermal Characteristics of Fires in a Noncombustible Corner,” Fire Safety Journal, 38 pp. 709–745 (2003).CrossRef B.Y. Lattimer and U. Sorathia, “Thermal Characteristics of Fires in a Noncombustible Corner,” Fire Safety Journal, 38 pp. 709–745 (2003).CrossRef
95.
Zurück zum Zitat J.R. Welker and C.M. Sliepcevich, “The Effect of Wind on Flames,” Technical Report No. 2, NBS Contract XST 1142 with University of Oklahoma, Norman (1965). J.R. Welker and C.M. Sliepcevich, “The Effect of Wind on Flames,” Technical Report No. 2, NBS Contract XST 1142 with University of Oklahoma, Norman (1965).
96.
Zurück zum Zitat S. Attalah and P.K. Raj, “Radiation from LNG Fires,” Interim Report on Phase II Work, Project IS-3.1 LNG Safety Program, American Gas Association, Arlington, VA (1974). S. Attalah and P.K. Raj, “Radiation from LNG Fires,” Interim Report on Phase II Work, Project IS-3.1 LNG Safety Program, American Gas Association, Arlington, VA (1974).
97.
Zurück zum Zitat K.G. Huffman, J.R. Welker, and C.M. Sliepcevich, “Wind and Interaction Effects on Free-Burning Fires,” Technical Report No. 1441–3, NBS Contract CST 1142 with University of Oklahoma, Norman (1967). K.G. Huffman, J.R. Welker, and C.M. Sliepcevich, “Wind and Interaction Effects on Free-Burning Fires,” Technical Report No. 1441–3, NBS Contract CST 1142 with University of Oklahoma, Norman (1967).
98.
Zurück zum Zitat T.A. Brzustowski, S.R. Gollahalli, and H.F. Sullivan, “The Turbulent Hydrogen Diffusion Flame in Cross-Wind,” Combustion Science and Technology, 11, pp. 29–33 (1975). T.A. Brzustowski, S.R. Gollahalli, and H.F. Sullivan, “The Turbulent Hydrogen Diffusion Flame in Cross-Wind,” Combustion Science and Technology, 11, pp. 29–33 (1975).
99.
Zurück zum Zitat O.K. Sönju and J. Hustad, “An Experimental Study of Turbulent Jet Diffusion Flame,” 9th ICODERS, American Institute of Aeronautics and Astronautics, Poitiers, France (1984). O.K. Sönju and J. Hustad, “An Experimental Study of Turbulent Jet Diffusion Flame,” 9th ICODERS, American Institute of Aeronautics and Astronautics, Poitiers, France (1984).
100.
Zurück zum Zitat H.A. Becker, D. Liang, and C.I. Downey, “Effect of Burner Orientation and Ambient Airflow on Geometry of Turbulent Free Diffusion Flames,” 18th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1061–1071 (1981). H.A. Becker, D. Liang, and C.I. Downey, “Effect of Burner Orientation and Ambient Airflow on Geometry of Turbulent Free Diffusion Flames,” 18th Symposium on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1061–1071 (1981).
101.
Zurück zum Zitat Newman, Jeffrey S. and Croce, Paul A., “A Simple Aspirated Thermocouple for Use in Fires,” Journal of Fire and Flammability, 10, pp. 326–336 (1979). Newman, Jeffrey S. and Croce, Paul A., “A Simple Aspirated Thermocouple for Use in Fires,” Journal of Fire and Flammability, 10, pp. 326–336 (1979).
102.
Zurück zum Zitat Burgess, D.S., Grumer, J., and Wolfhard, H.G., “Burning Rates of Liquid Fuels in Large and Small Open Trays,” International Symposium on the Use of Models in Fire Research, Publication 786, National Academy of Sciences - National Research Council, Washington, DC, 1961, p68. Burgess, D.S., Grumer, J., and Wolfhard, H.G., “Burning Rates of Liquid Fuels in Large and Small Open Trays,” International Symposium on the Use of Models in Fire Research, Publication 786, National Academy of Sciences - National Research Council, Washington, DC, 1961, p68.
103.
Zurück zum Zitat NFPA 92B, Standard for Smoke Management Systems in Malls, Atria, and Large Spaces, National Fire Protection Association, Quincy, MA (2005). NFPA 92B, Standard for Smoke Management Systems in Malls, Atria, and Large Spaces, National Fire Protection Association, Quincy, MA (2005).
104.
Zurück zum Zitat R.L. Alpert and E.J. Ward, “Evaluation of Unsprinklered Fire Hazards,” Fire Safety Journal, 7, pp. 127–143 (1984).CrossRef R.L. Alpert and E.J. Ward, “Evaluation of Unsprinklered Fire Hazards,” Fire Safety Journal, 7, pp. 127–143 (1984).CrossRef
Metadaten
Titel
Fire Plumes, Flame Height, and Air Entrainment
verfasst von
Gunnar Heskestad
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_13