Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

03.01.2019

First-order approximation to the Boltzmann–Curtiss equation for flows with local spin

verfasst von: Louis B. Wonnell, James Chen

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The first-order approximation to the solution of the Boltzmann–Curtiss transport equation is derived. The resulting distribution function treats the rotation or gyration of spherical particles as an independent classical variable, deviating from the quantum mechanical treatment of molecular rotation found in the Wang Chang–Uhlenbeck equation. The Boltzmann–Curtiss equation, therefore, does not treat different rotational motions as separate molecular species. The first-order distribution function yields momentum equations for the translational velocity and gyration, which match the form of the governing equations of morphing continuum theory (MCT), a theory derived from the approach of rational continuum thermomechanics. The contributions of the local rotation to the Cauchy stress and the viscous diffusion are found to be proportional to an identical expression based on the relaxation time, number density, and equilibrium temperature of the fluid. When gyration is equated to the macroscopic angular velocity, the kinetic description reduces to the first-order approximation for a classical monatomic gas, and the governing equations match the form of the Navier–Stokes equations. The relaxation time used for this approximation is shown to be more complex due to the additional variable of local rotation. The approach of De Groot and Mazur is invoked to give an initial approximation for the relaxation of the gyration. The incorporation of this relaxation time, and other physical parameters, into the coefficients of the governing equations provides a more in-depth physical treatment of the new terms in the MCT equations, allowing for experimenters to test these expressions and get a better understanding of new coefficients in MCT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McCormack P (2012) Vortex, molecular spin and nanovorticity. Springer, New YorkCrossRef McCormack P (2012) Vortex, molecular spin and nanovorticity. Springer, New YorkCrossRef
4.
Zurück zum Zitat Hirschfelder JO, Bird RB, Curtiss CF (1964) Molecular theory of gases and liquids. Wiley, New YorkMATH Hirschfelder JO, Bird RB, Curtiss CF (1964) Molecular theory of gases and liquids. Wiley, New YorkMATH
5.
Zurück zum Zitat Hynes JT, Kapral R, Weinberg M (1978) Molecular rotation and reorientation: microscopic and hydrodynamic contributions. J Chem Phys 69:2725CrossRef Hynes JT, Kapral R, Weinberg M (1978) Molecular rotation and reorientation: microscopic and hydrodynamic contributions. J Chem Phys 69:2725CrossRef
6.
Zurück zum Zitat Jenkins JT, Richman MW (1985) Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys Fluids 28:3485CrossRefMATH Jenkins JT, Richman MW (1985) Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys Fluids 28:3485CrossRefMATH
8.
Zurück zum Zitat Truesdell C, Noll W (2004) The non-linear field theories of mechanics. In: Flugge S (ed) Encyclopedia of physics. Springer, Berlin Truesdell C, Noll W (2004) The non-linear field theories of mechanics. In: Flugge S (ed) Encyclopedia of physics. Springer, Berlin
9.
Zurück zum Zitat Wang-Chang CS, Uhlenbeck GE, De Boer J (1964) The heat conductivity and viscosity of polyatomic gases. Stud Stat Mech 2:241MathSciNetMATH Wang-Chang CS, Uhlenbeck GE, De Boer J (1964) The heat conductivity and viscosity of polyatomic gases. Stud Stat Mech 2:241MathSciNetMATH
11.
Zurück zum Zitat Eringen AC (1999) Microcontinuum field theories: I. Foundations and solids, Springer, New YorkCrossRefMATH Eringen AC (1999) Microcontinuum field theories: I. Foundations and solids, Springer, New YorkCrossRefMATH
12.
Zurück zum Zitat Eringen AC (2001) Microcontinuum field theories: II. Fluent media, Springer, New YorkMATH Eringen AC (2001) Microcontinuum field theories: II. Fluent media, Springer, New YorkMATH
13.
14.
Zurück zum Zitat Stokes VK (2012) Theories of fluids with microstructure: an introduction. Springer, Berlin Stokes VK (2012) Theories of fluids with microstructure: an introduction. Springer, Berlin
15.
Zurück zum Zitat Meng J, Zhang Y, Hadjiconstantinou NG, Radtke GA, Shan X (2013) Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows. J Fluid Mech 718:347MathSciNetCrossRefMATH Meng J, Zhang Y, Hadjiconstantinou NG, Radtke GA, Shan X (2013) Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows. J Fluid Mech 718:347MathSciNetCrossRefMATH
16.
Zurück zum Zitat Munafo A, Panesi M, Magin TE (2014) Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. Phys Rev E 89:023001CrossRef Munafo A, Panesi M, Magin TE (2014) Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. Phys Rev E 89:023001CrossRef
17.
Zurück zum Zitat Arima T, Ruggeri T, Sugiyama M (2017) Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. Phys Rev E 96:042143CrossRef Arima T, Ruggeri T, Sugiyama M (2017) Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. Phys Rev E 96:042143CrossRef
18.
Zurück zum Zitat Eu BC (1986) Kinetic theory and irreversible thermodynamics. Acc Chem Res 19:153CrossRef Eu BC (1986) Kinetic theory and irreversible thermodynamics. Acc Chem Res 19:153CrossRef
19.
Zurück zum Zitat Eu BC (1998) Nonequilibrium statistical mechanics: ensemble method. Springer, New YorkCrossRefMATH Eu BC (1998) Nonequilibrium statistical mechanics: ensemble method. Springer, New YorkCrossRefMATH
20.
Zurück zum Zitat Eu BC (2002) Generalized thermodynamics: thermodynamics of irreversible processes and generalized hydrodynamics. Springer, New YorkCrossRefMATH Eu BC (2002) Generalized thermodynamics: thermodynamics of irreversible processes and generalized hydrodynamics. Springer, New YorkCrossRefMATH
21.
Zurück zum Zitat Myong RS (1999) Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows. Phys Fluids 11:2788CrossRefMATH Myong RS (1999) Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows. Phys Fluids 11:2788CrossRefMATH
22.
Zurück zum Zitat Myong RS (2001) A computational method for Eu’s generalized hydrodynamic equations of rarefied and microscale gasdynamics. J Comput Phys 168:47CrossRefMATH Myong RS (2001) A computational method for Eu’s generalized hydrodynamic equations of rarefied and microscale gasdynamics. J Comput Phys 168:47CrossRefMATH
23.
Zurück zum Zitat Myong RS (2004) A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows. J Comput Phys 195:655CrossRefMATH Myong RS (2004) A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows. J Comput Phys 195:655CrossRefMATH
24.
Zurück zum Zitat Grad H (1952) Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals. Commun Pure Appl Math 5:455MathSciNetCrossRefMATH Grad H (1952) Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals. Commun Pure Appl Math 5:455MathSciNetCrossRefMATH
25.
Zurück zum Zitat De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, AmsterdamMATH De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, AmsterdamMATH
26.
Zurück zum Zitat Snider RF, Lewchuk KS (1967) Irreversible thermodynamics of a fluid system with spin. J Chem Phys 46:3163CrossRef Snider RF, Lewchuk KS (1967) Irreversible thermodynamics of a fluid system with spin. J Chem Phys 46:3163CrossRef
27.
28.
Zurück zum Zitat Evans DJ, Streett WB (1978) Transport properties of homonuclear diatomics: II. Dense fluids. Mol Phys 36:161 Evans DJ, Streett WB (1978) Transport properties of homonuclear diatomics: II. Dense fluids. Mol Phys 36:161
29.
Zurück zum Zitat Boltzmann L (1878) Zur theorie der elastischen nachwirkung. Ann Phys 241:430CrossRef Boltzmann L (1878) Zur theorie der elastischen nachwirkung. Ann Phys 241:430CrossRef
30.
Zurück zum Zitat Maxwell JC (1873) Clerk Maxwell’s kinetic theory of gases. Nature 8:122CrossRef Maxwell JC (1873) Clerk Maxwell’s kinetic theory of gases. Nature 8:122CrossRef
31.
Zurück zum Zitat Curtiss CF (1981) The classical Boltzmann equation of a gas of diatomic molecules. J Chem Phys 75:376CrossRef Curtiss CF (1981) The classical Boltzmann equation of a gas of diatomic molecules. J Chem Phys 75:376CrossRef
32.
Zurück zum Zitat Curtiss CF (1992) The classical Boltzmann equation of a molecular gas. J Chem Phys 97:1416CrossRef Curtiss CF (1992) The classical Boltzmann equation of a molecular gas. J Chem Phys 97:1416CrossRef
33.
Zurück zum Zitat Curtiss CF, Dahler JS (1963) Kinetic theory of nonspherical molecules. V. J Chem Phys 38:2352 Curtiss CF, Dahler JS (1963) Kinetic theory of nonspherical molecules. V. J Chem Phys 38:2352
35.
Zurück zum Zitat She RSC, Sather NF (1967) Kinetic theory of polyatomic gases. J Chem Phys 47:4978CrossRef She RSC, Sather NF (1967) Kinetic theory of polyatomic gases. J Chem Phys 47:4978CrossRef
36.
Zurück zum Zitat Myong RS (2014) On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules. Phys Fluids 26:056102CrossRef Myong RS (2014) On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules. Phys Fluids 26:056102CrossRef
37.
Zurück zum Zitat Huang K (1987) Statistical mechanics. Wiley, New YorkMATH Huang K (1987) Statistical mechanics. Wiley, New YorkMATH
40.
Zurück zum Zitat Monchick L (1964) Small periodic disturbances in polyatomic gases. Phys Fluids 7:882CrossRef Monchick L (1964) Small periodic disturbances in polyatomic gases. Phys Fluids 7:882CrossRef
41.
Zurück zum Zitat Carnevale EH, Carey C, Larson G (1967) Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gases at high temperatures. J Chem Phys 47:2829CrossRef Carnevale EH, Carey C, Larson G (1967) Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gases at high temperatures. J Chem Phys 47:2829CrossRef
42.
Zurück zum Zitat Monchick L, Pereira ANG, Mason EA (1965) Heat conductivity of polyatomic and polar gases and gas mixtures. J Chem Phys 42:3241CrossRef Monchick L, Pereira ANG, Mason EA (1965) Heat conductivity of polyatomic and polar gases and gas mixtures. J Chem Phys 42:3241CrossRef
43.
Zurück zum Zitat Valentini P, Zhang C, Schwartzentruber TE (2012) Molecular dynamics simulation of rotational relaxation in nitrogen: implications for rotational collision number models. Phys Fluids 24:106101CrossRef Valentini P, Zhang C, Schwartzentruber TE (2012) Molecular dynamics simulation of rotational relaxation in nitrogen: implications for rotational collision number models. Phys Fluids 24:106101CrossRef
44.
Zurück zum Zitat Chen J (2017) Morphing continuum theory for turbulence: theory, computation, and visualization. Phys Rev E 96:043108CrossRef Chen J (2017) Morphing continuum theory for turbulence: theory, computation, and visualization. Phys Rev E 96:043108CrossRef
45.
Zurück zum Zitat Chen J, Lee JD, Liang C (2011) Constitutive equations of micropolar electromagnetic fluids. J Non-Newtonian Fluid Mech 166:867CrossRefMATH Chen J, Lee JD, Liang C (2011) Constitutive equations of micropolar electromagnetic fluids. J Non-Newtonian Fluid Mech 166:867CrossRefMATH
47.
Zurück zum Zitat Peddieson J (1972) An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci 10:23CrossRef Peddieson J (1972) An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci 10:23CrossRef
48.
Zurück zum Zitat Mehrabian R, Atefi G (2008) A cosserat continuum mechanical approach to turbulent channel pressure driven flow of isotropic fluid. J Dispers Sci Technol 29(7):1035CrossRef Mehrabian R, Atefi G (2008) A cosserat continuum mechanical approach to turbulent channel pressure driven flow of isotropic fluid. J Dispers Sci Technol 29(7):1035CrossRef
49.
Zurück zum Zitat Alizadeh M, Silber G, Nejad AG (2011) A continuum mechanical gradient theory with an application to fully developed turbulent flows. J Dispers Sci Technol 32(2):185CrossRef Alizadeh M, Silber G, Nejad AG (2011) A continuum mechanical gradient theory with an application to fully developed turbulent flows. J Dispers Sci Technol 32(2):185CrossRef
50.
Zurück zum Zitat Wonnell LB, Chen J (2017) Morphing continuum theory: incorporating the physics of microstructures to capture the transition to turbulence within a boundary layer. J Fluid Eng 139:011205CrossRef Wonnell LB, Chen J (2017) Morphing continuum theory: incorporating the physics of microstructures to capture the transition to turbulence within a boundary layer. J Fluid Eng 139:011205CrossRef
51.
Zurück zum Zitat Wonnell LB, Cheikh MI, Chen J (2018) Morphing continuum simulation of transonic flow over Axisymmetric Hill. AIAA J 56:4321–4330CrossRef Wonnell LB, Cheikh MI, Chen J (2018) Morphing continuum simulation of transonic flow over Axisymmetric Hill. AIAA J 56:4321–4330CrossRef
52.
Zurück zum Zitat Cheikh MI, Wonnell LB, Chen J (2018) Morphing continuum analysis of energy transfer in compressible turbulence. Phys Rev Fluids 3(2):024604CrossRef Cheikh MI, Wonnell LB, Chen J (2018) Morphing continuum analysis of energy transfer in compressible turbulence. Phys Rev Fluids 3(2):024604CrossRef
53.
Zurück zum Zitat Kremer GM (2010) An introduction to the Boltzmann equation and transport processes in gases. Springer, BerlinCrossRefMATH Kremer GM (2010) An introduction to the Boltzmann equation and transport processes in gases. Springer, BerlinCrossRefMATH
54.
Zurück zum Zitat Struchtrup H (2005) Macroscopic transport equations for rarefied gas flows. Springer, New York, pp 145–160MATH Struchtrup H (2005) Macroscopic transport equations for rarefied gas flows. Springer, New York, pp 145–160MATH
55.
Zurück zum Zitat Gupta VK, Shukla P, Torrilhon M (2018) Higher-order moment theories for dilute granular gases of smooth hard spheres. J Fluid Mech 836:451MathSciNetCrossRef Gupta VK, Shukla P, Torrilhon M (2018) Higher-order moment theories for dilute granular gases of smooth hard spheres. J Fluid Mech 836:451MathSciNetCrossRef
56.
57.
Zurück zum Zitat Fowles G, Cassidy G (2004) Analytical mechanics. Thomson, Belmont Fowles G, Cassidy G (2004) Analytical mechanics. Thomson, Belmont
58.
Zurück zum Zitat Baraff D (1997) An introduction to physically based modeling: rigid body simulation I—unconstrained rigid body dynamics. In: SIGGRAPH course notes Baraff D (1997) An introduction to physically based modeling: rigid body simulation I—unconstrained rigid body dynamics. In: SIGGRAPH course notes
59.
Zurück zum Zitat Chen H, Kandasamy S, Orszag S, Shock R, Succi S, Yakhot V (2003) Extended Boltzmann kinetic equation for turbulent flows. Science 301(5633):633CrossRef Chen H, Kandasamy S, Orszag S, Shock R, Succi S, Yakhot V (2003) Extended Boltzmann kinetic equation for turbulent flows. Science 301(5633):633CrossRef
60.
Zurück zum Zitat Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511 Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511
61.
Zurück zum Zitat Curie P (1908) Oeuvres de Pierre Curie: publiées par les soins de la société de physique. Gauthier-Villars, Paris Curie P (1908) Oeuvres de Pierre Curie: publiées par les soins de la société de physique. Gauthier-Villars, Paris
62.
Zurück zum Zitat Montero S, Pérez-Ríos J (2014) Rotational relaxation in molecular hydrogen and deuterium: theory versus acoustic experiments. J Chem Phys 141:114301CrossRef Montero S, Pérez-Ríos J (2014) Rotational relaxation in molecular hydrogen and deuterium: theory versus acoustic experiments. J Chem Phys 141:114301CrossRef
64.
Zurück zum Zitat Becker R (1922) \(\text{ Sto }\beta \text{ welle }\) und Detonation. Z Phys 8(1):321CrossRef Becker R (1922) \(\text{ Sto }\beta \text{ welle }\) und Detonation. Z Phys 8(1):321CrossRef
65.
Zurück zum Zitat Silber G, Janoske U, Alizadeh M, Benderoth G (2006) An application of a gradient theory with dissipative boundary conditions to fully developed turbulent flows. J Fluid Eng 129:643CrossRef Silber G, Janoske U, Alizadeh M, Benderoth G (2006) An application of a gradient theory with dissipative boundary conditions to fully developed turbulent flows. J Fluid Eng 129:643CrossRef
66.
Zurück zum Zitat Ahmed MM, Chen J (2018) An advanced kinetic description for shock structure under hypersonic conditions. In: 71st Annual meeting of the APS division of fluid dynamics, 2018, vol 63. Bulletin of the American Physical Society Ahmed MM, Chen J (2018) An advanced kinetic description for shock structure under hypersonic conditions. In: 71st Annual meeting of the APS division of fluid dynamics, 2018, vol 63. Bulletin of the American Physical Society
67.
Zurück zum Zitat Cheikh MI, Chen J (2017) A morphing continuum approach to supersonic flow over a compression ramp. In: 47th AIAA fluid dynamics conference, pp AIAA 2017–3460 Cheikh MI, Chen J (2017) A morphing continuum approach to supersonic flow over a compression ramp. In: 47th AIAA fluid dynamics conference, pp AIAA 2017–3460
68.
Zurück zum Zitat Cheikh MI, Wonnell LB, Chen J (2017) Energy cascade analysis: from subscale eddies to mean flow. In: 70th Annual meeting of the APS division of fluid dynamics, 2017, vol. 62. Bulletin of the American Physical Society Cheikh MI, Wonnell LB, Chen J (2017) Energy cascade analysis: from subscale eddies to mean flow. In: 70th Annual meeting of the APS division of fluid dynamics, 2017, vol. 62. Bulletin of the American Physical Society
69.
Zurück zum Zitat Wonnell LB, Chen J (2016) A morphing continuum approach to compressible flows: shock wave-turbulent boundary layer interaction. In: 46th AIAA fluid dynamics conference, pp AIAA 2016–4279 Wonnell LB, Chen J (2016) A morphing continuum approach to compressible flows: shock wave-turbulent boundary layer interaction. In: 46th AIAA fluid dynamics conference, pp AIAA 2016–4279
70.
Zurück zum Zitat Wonnell LB, Chen J (2017) Extension of morphing continuum theory to numerical simulations of transonic flow over a bump. In: 47th AIAA fluid dynamics conference, pp AIAA 2017–3461 Wonnell LB, Chen J (2017) Extension of morphing continuum theory to numerical simulations of transonic flow over a bump. In: 47th AIAA fluid dynamics conference, pp AIAA 2017–3461
Metadaten
Titel
First-order approximation to the Boltzmann–Curtiss equation for flows with local spin
verfasst von
Louis B. Wonnell
James Chen
Publikationsdatum
03.01.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-018-9981-7

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.