Skip to main content
Erschienen in:

27.03.2024 | Technical Paper

First principle and deep learning based switching property prediction of optical bio-molecular switch

verfasst von: Debarati Dey Roy, Pradipta Roy, Debashis De

Erschienen in: Microsystem Technologies | Ausgabe 7/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electronic characterization of bio-molecular nanoscale devices is important in the new edge of nanotechnology and the field of nanoelectronics. In this new era, the molecular transmission properties of the Adenine bio-molecular optical switch are predicted using Density Functional Theory along with Non-Equilibrium Green's Function-based First Principle approach and this phenomenon is supported with Machine Learning based algorithms. The photo-induced switching characteristics are observed for the bi-directional bio-molecular switch for both forward and reverse bias conditions. This switching behaviour converts the position of the bio-molecular switch to its straightened and 60° twisted form. The electrical doping process plays an important role in generating p and n regions at the two ends of the switch. In this experiment, gold electrodes are used as the supporting anchor of the Adenine molecules. The HOMO–LUMO gap and I–V characteristics of the bio-molecular switch are analyzed using first principle formalisms and compared with the Machine learning approach. This ML approach helps design the future-generation prediction model for the nano-scale electronic device simulation process. This prediction model can be obtained without knowing the switching characteristics and also without knowing all-time sequence generating waveforms but only observing the waveform prediction for up to a certain period sequence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abidi KR, Koskinen P (2022) Optimizing density-functional simulations for two-dimensional metals. Phys Rev Mater 6(12):124004CrossRef Abidi KR, Koskinen P (2022) Optimizing density-functional simulations for two-dimensional metals. Phys Rev Mater 6(12):124004CrossRef
Zurück zum Zitat Achar SK, Schneider J, Stewart DA (2022) Using machine learning potentials to explore interdiffusion at metal-chalcogenide interfaces. ACS Appl Mater Interfaces 14(51):56963–56974CrossRef Achar SK, Schneider J, Stewart DA (2022) Using machine learning potentials to explore interdiffusion at metal-chalcogenide interfaces. ACS Appl Mater Interfaces 14(51):56963–56974CrossRef
Zurück zum Zitat Alhashmi A, Kanoun MB, Goumri-Said S (2023) Machine learning for halide perovskite materials ABX3 (B= Pb, X= I, Br, Cl) assessment of structural properties and band gap engineering for solar energy. Materials 16(7):2657CrossRef Alhashmi A, Kanoun MB, Goumri-Said S (2023) Machine learning for halide perovskite materials ABX3 (B= Pb, X= I, Br, Cl) assessment of structural properties and band gap engineering for solar energy. Materials 16(7):2657CrossRef
Zurück zum Zitat Basak A, Manhas SK, Kapil G, Dasgupta S, Jain N. A (2012) A Simulation study of the effect of platinum contact on CNT based gas sensors using self-consistent field with NEGF method. International Conference on Simulation and Semiconductor Processes and Devices (SISPAD), Denver, Colorado, USA Basak A, Manhas SK, Kapil G, Dasgupta S, Jain N. A (2012) A Simulation study of the effect of platinum contact on CNT based gas sensors using self-consistent field with NEGF method. International Conference on Simulation and Semiconductor Processes and Devices (SISPAD), Denver, Colorado, USA
Zurück zum Zitat Cai-Juan X, De-Sheng L, Ying-Tang Z (2011) Electronic transmissionproperties of a naphthopyran-based optical molecular switch: an ab initio study. Chin Phys Lett 28(9):093102CrossRef Cai-Juan X, De-Sheng L, Ying-Tang Z (2011) Electronic transmissionproperties of a naphthopyran-based optical molecular switch: an ab initio study. Chin Phys Lett 28(9):093102CrossRef
Zurück zum Zitat Das B, Abe S (2006) Designing cyclophane-based molecular wire sensors. J Phys Chem B 110(47):23806–23811CrossRef Das B, Abe S (2006) Designing cyclophane-based molecular wire sensors. J Phys Chem B 110(47):23806–23811CrossRef
Zurück zum Zitat Dey D, Roy P, De D (2015) Molecular modeling of Nano bio pin FET. 19th International Symposium on VLSI Design and Test (VDAT), Ahmedabad, India IEEE Dey D, Roy P, De D (2015) Molecular modeling of Nano bio pin FET. 19th International Symposium on VLSI Design and Test (VDAT), Ahmedabad, India IEEE
Zurück zum Zitat Dieb M, Hou Z, Tsuda K (2018) Structure prediction of boron-doped graphene by machine learning. J Chem Phys 148(24):241716CrossRef Dieb M, Hou Z, Tsuda K (2018) Structure prediction of boron-doped graphene by machine learning. J Chem Phys 148(24):241716CrossRef
Zurück zum Zitat Gao W, Kahn A (2003) Electrical doping: the impact on interfaces of π-conjugated molecular films. J Phys: Condens Matter 15(38):S2757–S2770 Gao W, Kahn A (2003) Electrical doping: the impact on interfaces of π-conjugated molecular films. J Phys: Condens Matter 15(38):S2757–S2770
Zurück zum Zitat Guo YD, Yan XH, Xiao Y (2012) Computational investigation of DNA detection using single-electron transmission-based nanopore. J Phys Chem C 116(40):21609–21614CrossRef Guo YD, Yan XH, Xiao Y (2012) Computational investigation of DNA detection using single-electron transmission-based nanopore. J Phys Chem C 116(40):21609–21614CrossRef
Zurück zum Zitat Huang X, Ma S, Wang H, Lin S, Zhao CY, Wang H, Ju S (2022) Enhancing thermoelectric properties of isotope graphene nanoribbons via machine learning guided manipulation of disordered antidots and interfaces. Int J Heat Mass Transf 197:123332CrossRef Huang X, Ma S, Wang H, Lin S, Zhao CY, Wang H, Ju S (2022) Enhancing thermoelectric properties of isotope graphene nanoribbons via machine learning guided manipulation of disordered antidots and interfaces. Int J Heat Mass Transf 197:123332CrossRef
Zurück zum Zitat Kim N, Park S, Kim Y, Kim H, Im H, Kim H (2004) Characteristics of ballistic transport in short-channel MOSFETs. J Korean Phys Soc 45:S928–S932 Kim N, Park S, Kim Y, Kim H, Im H, Kim H (2004) Characteristics of ballistic transport in short-channel MOSFETs. J Korean Phys Soc 45:S928–S932
Zurück zum Zitat Li XF, Ren H, Wang LL, Cheng KQ, Yang J, Luo Y (2010) Important structural factors controlling the conductance of DNA pairs in molecular junctions. J Phys Chem C 114(33):14240–14242CrossRef Li XF, Ren H, Wang LL, Cheng KQ, Yang J, Luo Y (2010) Important structural factors controlling the conductance of DNA pairs in molecular junctions. J Phys Chem C 114(33):14240–14242CrossRef
Zurück zum Zitat Li-Ping A, Chun-Mei L, Nian-Hua L (2012) Negative differential resistance in atomic carbon chain-graphene junctions. Commun Theor Phys 57(6):1087CrossRef Li-Ping A, Chun-Mei L, Nian-Hua L (2012) Negative differential resistance in atomic carbon chain-graphene junctions. Commun Theor Phys 57(6):1087CrossRef
Zurück zum Zitat Liu H, Li G, Ai H, Li J, Bu Y (2011a) Electronic enhancement effect of copper modification of base pairs on the conductivity of DNA. J Phys Chem C 115(45):22547–22556CrossRef Liu H, Li G, Ai H, Li J, Bu Y (2011a) Electronic enhancement effect of copper modification of base pairs on the conductivity of DNA. J Phys Chem C 115(45):22547–22556CrossRef
Zurück zum Zitat Liu H, Li G, Zhang L, Li J, Wang M, Bu Y (2011b) Electronic promotion effect of double proton straightenedfer on conduction of DNA through improvement of straightenedverse electronic communication of base pairs. J Chem Phys 135(13):134315CrossRef Liu H, Li G, Zhang L, Li J, Wang M, Bu Y (2011b) Electronic promotion effect of double proton straightenedfer on conduction of DNA through improvement of straightenedverse electronic communication of base pairs. J Chem Phys 135(13):134315CrossRef
Zurück zum Zitat Lortaraprasert C, Shiomi J (2022) Robust combined modeling of crystalline and amorphous silicon grain boundary conductance by machine learning. Npj Comput Mater 8(1):219CrossRef Lortaraprasert C, Shiomi J (2022) Robust combined modeling of crystalline and amorphous silicon grain boundary conductance by machine learning. Npj Comput Mater 8(1):219CrossRef
Zurück zum Zitat Lundstrom M, Ren Z (2002) Essential physics of carrier transmission in nanoscale MOSFETs. IEEE Straightened Actions Electron Dev 49(1):133–141CrossRef Lundstrom M, Ren Z (2002) Essential physics of carrier transmission in nanoscale MOSFETs. IEEE Straightened Actions Electron Dev 49(1):133–141CrossRef
Zurück zum Zitat Ma J, Dong H, Li D, Liu D (2012) Negative differential resistance behaviors in OPE derivatives combined C60 molecular junctions modulated with side groups. Sci China Phys Mech Astron 55(8):1412–1416CrossRef Ma J, Dong H, Li D, Liu D (2012) Negative differential resistance behaviors in OPE derivatives combined C60 molecular junctions modulated with side groups. Sci China Phys Mech Astron 55(8):1412–1416CrossRef
Zurück zum Zitat Ragone M, Saray MT, Long L, Shahbazian-Yassar R, Mashayek F, Yurkiv V (2022) Deep learning for mapping element distribution of high-entropy alloys in scanning transmission electron microscopy images. Comput Mater Sci 201:110905CrossRef Ragone M, Saray MT, Long L, Shahbazian-Yassar R, Mashayek F, Yurkiv V (2022) Deep learning for mapping element distribution of high-entropy alloys in scanning transmission electron microscopy images. Comput Mater Sci 201:110905CrossRef
Zurück zum Zitat Serge Rudaz L (1998) U.S. Patent 5,729,029 Serge Rudaz L (1998) U.S. Patent 5,729,029
Zurück zum Zitat Stanley JC, Mayr F, Gagliardi A (2020) Machine learning stability and bandgaps of lead-free perovskites for photovoltaics. Adv Theory Simul 3(1):1900178CrossRef Stanley JC, Mayr F, Gagliardi A (2020) Machine learning stability and bandgaps of lead-free perovskites for photovoltaics. Adv Theory Simul 3(1):1900178CrossRef
Zurück zum Zitat Staykov A, Tsuji Y, Yoshizawa K (2011) Conductance through short DNA molecules. J Phys Chem C 115(8):3481–3490CrossRef Staykov A, Tsuji Y, Yoshizawa K (2011) Conductance through short DNA molecules. J Phys Chem C 115(8):3481–3490CrossRef
Zurück zum Zitat Su W, Dong R, Yan X, Wang H, Liu H (2010) Current distance response for rapid DNA sequencing. J Comput Theor Nanosci 7(10):1885–1888CrossRef Su W, Dong R, Yan X, Wang H, Liu H (2010) Current distance response for rapid DNA sequencing. J Comput Theor Nanosci 7(10):1885–1888CrossRef
Zurück zum Zitat Venkateshvaran D, Kronemeijer AJ, Moriarty J, Emin D, Sirringhaus H (2014) Field-effect modulated Seebeck coefficient measurements in an organic polymer using a microfabricated on-chip architecture. APL Mater 2(3):032102CrossRef Venkateshvaran D, Kronemeijer AJ, Moriarty J, Emin D, Sirringhaus H (2014) Field-effect modulated Seebeck coefficient measurements in an organic polymer using a microfabricated on-chip architecture. APL Mater 2(3):032102CrossRef
Zurück zum Zitat Wan X, Zhang Z, Yu W, Guo Y (2021a) A density-functional-theory-based and machine-learning-accelerated hybrid method for intricate system catalysis. Mater Rep: Energy 1(3):100046 Wan X, Zhang Z, Yu W, Guo Y (2021a) A density-functional-theory-based and machine-learning-accelerated hybrid method for intricate system catalysis. Mater Rep: Energy 1(3):100046
Zurück zum Zitat Wan X, Zhang Z, Niu H, Yin Y, Kuai C, Wang J, Guo Y (2021b) Machine-learning-accelerated catalytic activity predictions of transition metal phthalocyanine dual-metal-site catalysts for CO2 reduction. J of Phys Chem Lett 12(26):6111–6118CrossRef Wan X, Zhang Z, Niu H, Yin Y, Kuai C, Wang J, Guo Y (2021b) Machine-learning-accelerated catalytic activity predictions of transition metal phthalocyanine dual-metal-site catalysts for CO2 reduction. J of Phys Chem Lett 12(26):6111–6118CrossRef
Zurück zum Zitat Wan X, Zhang Z, Yu W, Niu H, Wang X, Guo Y (2022) Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction. Patterns 3(9):100553CrossRef Wan X, Zhang Z, Yu W, Niu H, Wang X, Guo Y (2022) Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction. Patterns 3(9):100553CrossRef
Zurück zum Zitat Wang Z, Ye S, Wang H, Huang Q, He J, Chang S (2022) Graph representation-based machine learning framework for predicting electronic band structures of quantum-confined nanostructures. Sci China Mater 65(11):3157–3170CrossRef Wang Z, Ye S, Wang H, Huang Q, He J, Chang S (2022) Graph representation-based machine learning framework for predicting electronic band structures of quantum-confined nanostructures. Sci China Mater 65(11):3157–3170CrossRef
Zurück zum Zitat Westermayr J, Gastegger M, Menger MF, Mai S, González L, Marquetand P (2019) Machine learning enables long time scale molecular photodynamics simulations. Chem Sci 10(35):8100–8107CrossRef Westermayr J, Gastegger M, Menger MF, Mai S, González L, Marquetand P (2019) Machine learning enables long time scale molecular photodynamics simulations. Chem Sci 10(35):8100–8107CrossRef
Zurück zum Zitat Xia CJ, Liu DS, Fang CF, Zhao P (2010) The I-V characteristics of the butadienimine-based optical molecular switch: an ab initio study. Physica E 42(5):1763–1768CrossRef Xia CJ, Liu DS, Fang CF, Zhao P (2010) The I-V characteristics of the butadienimine-based optical molecular switch: an ab initio study. Physica E 42(5):1763–1768CrossRef
Zurück zum Zitat Xia CJ, Liu HC, Fang CF (2011) The IV characteristics of the 3, 3’, 5’, 5-tetra-tert-butyl-azobenzene optical molecular switch: a first-principles study. Adv Mater Res 152:839–842 Xia CJ, Liu HC, Fang CF (2011) The IV characteristics of the 3, 3’, 5’, 5-tetra-tert-butyl-azobenzene optical molecular switch: a first-principles study. Adv Mater Res 152:839–842
Zurück zum Zitat Xia CJ, Liu DS, Liu HC (2012a) Phenylazoimidazole as a possible optical molecular switch: an ab initio study. Optik-Int J Light Electron Opt 123(14):1307–1310CrossRef Xia CJ, Liu DS, Liu HC (2012a) Phenylazoimidazole as a possible optical molecular switch: an ab initio study. Optik-Int J Light Electron Opt 123(14):1307–1310CrossRef
Zurück zum Zitat Xia CJ, Liu DS, Liu HC, Zhang YT (2012b) Effect of chemical modifications on the electronic transmissionproperties of the optical molecular switch. Jpn J Appl Phys 51(1R):011601CrossRef Xia CJ, Liu DS, Liu HC, Zhang YT (2012b) Effect of chemical modifications on the electronic transmissionproperties of the optical molecular switch. Jpn J Appl Phys 51(1R):011601CrossRef
Zurück zum Zitat Yang B, Dong R, Yan X, Shi Q (2012) Recognizing nucleosides with straightenedverse electronic transmission via perpendicular direction of base planes for DNA sequencing. Nanoscale Res Lett 7(1):1–7CrossRef Yang B, Dong R, Yan X, Shi Q (2012) Recognizing nucleosides with straightenedverse electronic transmission via perpendicular direction of base planes for DNA sequencing. Nanoscale Res Lett 7(1):1–7CrossRef
Zurück zum Zitat Yoshida K, Kanematsu Y, Rocabado DSR, Ishimoto T (2023) Modelling the dynamic physical properties of vulcanised polymer models by molecular dynamics simulations and machine learning. Comput Mater Sci 221:112081CrossRef Yoshida K, Kanematsu Y, Rocabado DSR, Ishimoto T (2023) Modelling the dynamic physical properties of vulcanised polymer models by molecular dynamics simulations and machine learning. Comput Mater Sci 221:112081CrossRef
Zurück zum Zitat Zeng M, Shen L, Zhou M, Zhang C, Feng Y (2011) Graphene-based bipolar spin diode and spin transmission: rectification and amplification of spin-polarized current. Phys Rev B 83(11):115427CrossRef Zeng M, Shen L, Zhou M, Zhang C, Feng Y (2011) Graphene-based bipolar spin diode and spin transmission: rectification and amplification of spin-polarized current. Phys Rev B 83(11):115427CrossRef
Zurück zum Zitat Zhao P, Fang CF, Wang YM, Zhai YX, Liu DS (2009a) First-principles study of the switching characteristics of the 15, 16-dinitrile DDP/CPD-based optical molecular switch with carbon nanotube electrodes. Curr Appl Phys 9(6):1213–1216CrossRef Zhao P, Fang CF, Wang YM, Zhai YX, Liu DS (2009a) First-principles study of the switching characteristics of the 15, 16-dinitrile DDP/CPD-based optical molecular switch with carbon nanotube electrodes. Curr Appl Phys 9(6):1213–1216CrossRef
Zurück zum Zitat Zhao P, Fang CF, Wang YM, Zhai YX, Liu DS (2009b) First-principles study of the switching characteristics of the phenoxynaphthacenequinone-based optical molecular switch with carbon nanotube electrodes. Physica E 41(3):474–478CrossRef Zhao P, Fang CF, Wang YM, Zhai YX, Liu DS (2009b) First-principles study of the switching characteristics of the phenoxynaphthacenequinone-based optical molecular switch with carbon nanotube electrodes. Physica E 41(3):474–478CrossRef
Metadaten
Titel
First principle and deep learning based switching property prediction of optical bio-molecular switch
verfasst von
Debarati Dey Roy
Pradipta Roy
Debashis De
Publikationsdatum
27.03.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2024
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-024-05627-w