Skip to main content

2013 | OriginalPaper | Buchkapitel

5. First Principle Transport Modeling in Fusion Plasmas: Critical Issues for ITER

verfasst von : Yanick Sarazin

Erschienen in: From Hamiltonian Chaos to Complex Systems

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tokamaks aim at confining hot plasmas by means of strong magnetic fields in view of reaching a net energy gain through fusion reactions. Plasma confinement turns out to be governed by small-scale instabilities which saturate nonlinearly and lead to turbulent fluctuations of a few percent. This paper recalls the basic equations for modeling such weakly collisional plasmas. It essentially relies on the kinetic, or more precisely the gyrokinetic, description, although some attempts are made to incorporate some of the kinetic properties, namely, wave-particle resonances, in fluid models by means of collisionless closures. Three main types of micro-instabilities are detailed and studied linearly, namely, drift waves, interchange, and bump-on-tail. Finally, some of the main critical issues in turbulence modeling are addressed: flux-driven versus gradient-driven models, the subsequent impact of mean profile relaxation on turbulent transport dynamics, and the role of large-scale flows, either at equilibrium or turbulence driven, on turbulence saturation and on the possible triggering of transport barriers. The significant progress in understanding and prediction of turbulent transport in tokamak plasmas thanks to first-principle simulations is highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Notice that transverse drifts can also be derived within the fluid framework in the same adiabatic limit. At first order in the small ρ ∕ R parameter, with R the curvature—and or the gradient— length of B, they read: \(\mathbf{u}_{\perp }^{(1)} \equiv \mathbf{u}_{E} + \mathbf{u}_{s}^{{\ast}} = \frac{\mathbf{E}\times \mathbf{B}} {{B}^{2}} + \frac{\mathbf{B}\times \nabla p_{s}} {n_{s}e_{s}{B}^{2}}\). The first component, the electric drift u E , is also a particle drift. The latter one is not, since it depends on the pressure, which is a fluid quantity only. It is known as the diamagnetic drift u s  ∗ . It is the same order of magnitude for ions and electrons. Since it depends on the charge of the species, it carries transverse current. The second-order fluid drift is the so-called polarization drift. It is often approximated as follows: \(\mathbf{u}_{\perp }^{(2)} \equiv \mathbf{u}_{pol,\,s} = - \frac{m_{s}} {e_{s}{B}^{2}} \Big[\partial _{t} + (\mathbf{u}_{E} + \mathbf{u}_{s}^{{\ast}} + \mathbf{u}_{\parallel }).\nabla \Big]\nabla _{\perp }\phi\).
 
2
Notice that such a result intrinsically derives from the fast motion of the electrons in the parallel direction due to their small inertia. Therefore, only those modes which exhibit some structure in the parallel direction (i.e., such that k  ∥ ≠0) are subject to an adiabatic response of the electrons.
 
3
The ion density fluctuation δn i comes from the continuity equation, namely, \(\partial _{t}\delta n_{i} + u_{Er}\mathrm{d}n_{eq}/\mathrm{d}r = 0\), with \(u_{Er} = -\partial _{y}\phi /B\). For the considered plane wave, this reads as follows: \(-i\omega \delta n_{i} = i(k_{y}/B)(\mathrm{d}n_{eq}/\mathrm{d}r)\,\delta \phi\). The quasi-neutrality constraint \(\delta n_{i} =\delta n_{e}\) then leads to the result. See also Sect. 5.3.2
 
4
Indeed, it corresponds to 2 centered Maxwellians, for which Landau damping only is expected.
 
Literatur
1.
Zurück zum Zitat X. Garbet (Guest Editor), Turbulent Transport in Fusion Magnetised Plasmas, vol 6 (C.R. Physique, Amsterdam, 2006), 573–699 X. Garbet (Guest Editor), Turbulent Transport in Fusion Magnetised Plasmas, vol 6 (C.R. Physique, Amsterdam, 2006), 573–699
2.
3.
Zurück zum Zitat M.A. Beer, Ph.D. thesis, Princeton University (1995) M.A. Beer, Ph.D. thesis, Princeton University (1995)
5.
8.
Zurück zum Zitat P. Bertrand, M.R. Feix, Phys. Lett. 28A, 68 (1968) P. Bertrand, M.R. Feix, Phys. Lett. 28A, 68 (1968)
9.
Zurück zum Zitat P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, X. Garbet, P. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)CrossRef P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, X. Garbet, P. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)CrossRef
10.
Zurück zum Zitat Y. Sarazin, G. Dif-Pradalier, D. Zarzoso, X. Garbet, Ph. Ghendrih, V. Grandgirard, Plasma Phys. Control. Fusion 51, 115003 (2009)CrossRef Y. Sarazin, G. Dif-Pradalier, D. Zarzoso, X. Garbet, Ph. Ghendrih, V. Grandgirard, Plasma Phys. Control. Fusion 51, 115003 (2009)CrossRef
11.
Zurück zum Zitat L.D. Landau (1946), “On the vibrations of the electronic plasma”, in Collected Papers of L.D. Landau, vol 61, ed. by D. Ter Haar (Pergamon Press, Oxford, 1965), p. 445 L.D. Landau (1946), “On the vibrations of the electronic plasma”, in Collected Papers of L.D. Landau, vol 61, ed. by D. Ter Haar (Pergamon Press, Oxford, 1965), p. 445
12.
Zurück zum Zitat B.D. Fried, S.D. Conte, The Plasma Dispersion Function (Academic Press, New York NY, 1961) B.D. Fried, S.D. Conte, The Plasma Dispersion Function (Academic Press, New York NY, 1961)
14.
Zurück zum Zitat Y. Sarazin, V. Grandgirard, G. Dif-Pradalier, E. Fleurence, X. Garbet, Ph Ghendrih, P. Bertrand, N. Besse, N. Crouseilles, E. Sonnendrücker, G. Latu, E. Violard, Plasma Phys. Control Fusion 48, B179–B188 (2006) Y. Sarazin, V. Grandgirard, G. Dif-Pradalier, E. Fleurence, X. Garbet, Ph Ghendrih, P. Bertrand, N. Besse, N. Crouseilles, E. Sonnendrücker, G. Latu, E. Violard, Plasma Phys. Control Fusion 48, B179–B188 (2006)
16.
Zurück zum Zitat V. Grandgirard ans Y. Sarazin, to appear in Panoramas et Synthèses, Société Mathématique de France (2013) V. Grandgirard ans Y. Sarazin, to appear in Panoramas et Synthèses, Société Mathématique de France (2013)
17.
19.
Zurück zum Zitat D. Zarzoso, X. Garbet, Y. Sarazin, R. Dumont, V. Grandgirard, Phys. Plasmas 19, 022102 (2012)CrossRef D. Zarzoso, X. Garbet, Y. Sarazin, R. Dumont, V. Grandgirard, Phys. Plasmas 19, 022102 (2012)CrossRef
21.
Zurück zum Zitat Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, G. Dif-Pradalier, X. Garbet, Ph. Ghendrih, G. Latu, A. Strugarek, Nucl. Fusion 50, 054004 (2010)CrossRef Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, G. Dif-Pradalier, X. Garbet, Ph. Ghendrih, G. Latu, A. Strugarek, Nucl. Fusion 50, 054004 (2010)CrossRef
22.
23.
Zurück zum Zitat G. Dif-Pradalier, P.H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, C.S. Chang, Phys. Rev. E 82, 025401(R) (2010) G. Dif-Pradalier, P.H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, C.S. Chang, Phys. Rev. E 82, 025401(R) (2010)
25.
27.
Zurück zum Zitat R.E Waltz, G.D. Kerbel, J. Milovich, Phys. Plasmas 1, 2229 (1994) R.E Waltz, G.D. Kerbel, J. Milovich, Phys. Plasmas 1, 2229 (1994)
28.
Zurück zum Zitat A. Fujisawa, K. Itoh, H. Iguchi et al., Phys. Rev. Lett. 93, 165002 (2004)CrossRef A. Fujisawa, K. Itoh, H. Iguchi et al., Phys. Rev. Lett. 93, 165002 (2004)CrossRef
29.
Zurück zum Zitat P.H. Diamond, M.N. Rosenbluth, F.L. Hinton et al., Plasma Physics Control Nuclear Fusion Research (IAEA, Vienna, 1998) P.H. Diamond, M.N. Rosenbluth, F.L. Hinton et al., Plasma Physics Control Nuclear Fusion Research (IAEA, Vienna, 1998)
30.
Zurück zum Zitat Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, P.H. Diamond, Phys. Rev. Lett. 83, 3645 (1999)CrossRef Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, P.H. Diamond, Phys. Rev. Lett. 83, 3645 (1999)CrossRef
31.
32.
Zurück zum Zitat F.L. Hinton, M.N. Rosenbluth, Plasma Phys. Controlled Fusion 41, A653 (1999)CrossRef F.L. Hinton, M.N. Rosenbluth, Plasma Phys. Controlled Fusion 41, A653 (1999)CrossRef
33.
Zurück zum Zitat Y. Sarazin, V. Grandgirard, G. Dif-Pradalier et al., Phys. Plasmas 13, 092307 (2006)CrossRef Y. Sarazin, V. Grandgirard, G. Dif-Pradalier et al., Phys. Plasmas 13, 092307 (2006)CrossRef
35.
Zurück zum Zitat R. Moyer, K. Burrell, T. Carlstrom et al., Phys. Plasmas 2, 2397 (1995)CrossRef R. Moyer, K. Burrell, T. Carlstrom et al., Phys. Plasmas 2, 2397 (1995)CrossRef
39.
Zurück zum Zitat Y. Sarazin, M. Bécoulet, P. Beyer, X. Garbet, Ph. Ghendrih, T.C. Hender, E. Joffrin, X. Litaudon, P.J. Lomas, G.F. Matthews, V. Parail, G. Saibene, R. Sartori, Plasma Phys. Control. Fusion 44, 2445 (2002)CrossRef Y. Sarazin, M. Bécoulet, P. Beyer, X. Garbet, Ph. Ghendrih, T.C. Hender, E. Joffrin, X. Litaudon, P.J. Lomas, G.F. Matthews, V. Parail, G. Saibene, R. Sartori, Plasma Phys. Control. Fusion 44, 2445 (2002)CrossRef
Metadaten
Titel
First Principle Transport Modeling in Fusion Plasmas: Critical Issues for ITER
verfasst von
Yanick Sarazin
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6962-9_5