Skip to main content
Erschienen in: Journal of Electronic Materials 8/2021

31.05.2021 | Original Research Article

First-Principles Investigation of Structural, Elastic, Electronic, and Optical Properties of Cd1−xyZnxHgyS Quaternary Alloys

verfasst von: Sayantika Chanda, Manish Debbarma, Debankita Ghosh, Bimal Debnath, Surya Chattopadhyaya

Erschienen in: Journal of Electronic Materials | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

First-principles calculations have been carried out to explore the zinc and mercury composition-dependent structural, elastic, electronic, and optical properties of zinc-blend specimens under the Cd1−x−yZnxHgyS triangular quaternary system. Each quaternary alloy shows thermodynamic stability. Computed elastic stiffness constants confirm the mechanical stability, ductility, elastic anisotropy, compressibility, plasticity, and mixed type of bonding in each specimen. Calculations with modified Becke–Johnson (mBJ)-generalized gradient approximation (GGA) and GGA+U schemes show that each ternary or quaternary alloy is a direct band gap (ΓΓ) semiconductor. Carrier transportation in each specimen is significantly dominated by electrons due to their much lower effective mass compared to holes. Electronic transitions from the occupied S-3p state of the valence band to the unoccupied Zn-5s, Cd-6s, and Hg-7s states of the conduction band are exclusively or collectively responsible for the occurrence of intense peaks in the imaginary part of the dielectric function, ε2(ω), spectra of the considered specimens. The calculated oscillator strengths of quaternary alloys show the presence of a sufficient number of electrons in the unoccupied states of the conduction band beyond 25.0 eV of incident energy during optical excitations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (West Sussex: Wiley, 2009).CrossRef S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (West Sussex: Wiley, 2009).CrossRef
2.
Zurück zum Zitat V. Tomashyk, Quaternary Alloys Based on II–VI Semiconductors (New York: CRC Press, 2015).CrossRef V. Tomashyk, Quaternary Alloys Based on II–VI Semiconductors (New York: CRC Press, 2015).CrossRef
3.
Zurück zum Zitat S. Adachi, III-V ternary and quaternary compoundsands, Springer Handbook of Electronic and Photonic Materials. ed. S. Kasap, and P. Capper (Berlin: Springer, 2017), p. 725. S. Adachi, III-V ternary and quaternary compoundsands, Springer Handbook of Electronic and Photonic Materials. ed. S. Kasap, and P. Capper (Berlin: Springer, 2017), p. 725.
4.
Zurück zum Zitat J. Wang, and M. Isshiki, Wide-Band-gap II–VI Semiconductors: Growth and properties, Springer Handbook of Electronic and Photonic Materials (Berlin: Springer, 2006), p. 325.CrossRef J. Wang, and M. Isshiki, Wide-Band-gap II–VI Semiconductors: Growth and properties, Springer Handbook of Electronic and Photonic Materials (Berlin: Springer, 2006), p. 325.CrossRef
5.
Zurück zum Zitat R.J. Nelmes, and M.I. McMahon, Structural Transitions in the Group IV, III-V, and II-VI Semiconductors under Pressure, High Pressure in Semiconductor Physics I, Vol. 54. ed. T. Suski, and W. Paul (New York: Academic, 1998), p. 145. R.J. Nelmes, and M.I. McMahon, Structural Transitions in the Group IV, III-V, and II-VI Semiconductors under Pressure, High Pressure in Semiconductor Physics I, Vol. 54. ed. T. Suski, and W. Paul (New York: Academic, 1998), p. 145.
7.
Zurück zum Zitat K. Dybko, W. Szuszkiewicz, E. Dynowska, W. Paszkowicz, and B. Witkowska, Phys. B 256, 629 (1998).CrossRef K. Dybko, W. Szuszkiewicz, E. Dynowska, W. Paszkowicz, and B. Witkowska, Phys. B 256, 629 (1998).CrossRef
8.
Zurück zum Zitat F. Shieh, A.E. Saunders, and B.A. Korgel, J. Phys. Chem. B 109, 8538 (2005).CrossRef F. Shieh, A.E. Saunders, and B.A. Korgel, J. Phys. Chem. B 109, 8538 (2005).CrossRef
9.
10.
Zurück zum Zitat L.F. Xi, K.H. Chua, Y.Y. Zhao, J. Zhang, Q.H. Xiong, and Y.M. Lam, RSC Adv. 2, 5243 (2012).CrossRef L.F. Xi, K.H. Chua, Y.Y. Zhao, J. Zhang, Q.H. Xiong, and Y.M. Lam, RSC Adv. 2, 5243 (2012).CrossRef
11.
Zurück zum Zitat X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg, Prog. Mater. Sci. 56, 175 (2011).CrossRef X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg, Prog. Mater. Sci. 56, 175 (2011).CrossRef
12.
Zurück zum Zitat D. Schooss, A. Mews, A. Eychmuller, and H. Weller, Phys. Rev. B 49, 17072 (1994).CrossRef D. Schooss, A. Mews, A. Eychmuller, and H. Weller, Phys. Rev. B 49, 17072 (1994).CrossRef
13.
Zurück zum Zitat M. Kuno, K.A. Higginson, J.E. Bonevich, S.B. Qadri, M. Yousuf, and H. Mattoussi, Proc. SPIE 4808, 146 (2002).CrossRef M. Kuno, K.A. Higginson, J.E. Bonevich, S.B. Qadri, M. Yousuf, and H. Mattoussi, Proc. SPIE 4808, 146 (2002).CrossRef
14.
Zurück zum Zitat A. Mews, A.V. Kadavanich, U. Banin, and A.P. Alivisatos, Phys. Rev. B 53, 242 (1996).CrossRef A. Mews, A.V. Kadavanich, U. Banin, and A.P. Alivisatos, Phys. Rev. B 53, 242 (1996).CrossRef
15.
Zurück zum Zitat K. Hoang, C. Latouche, and S. Jobic, Comput. Mater. Sci. 163, 63 (2019).CrossRef K. Hoang, C. Latouche, and S. Jobic, Comput. Mater. Sci. 163, 63 (2019).CrossRef
16.
Zurück zum Zitat O. Medelung ed., Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology 17b. (Berlin: Springer, 1982). O. Medelung ed., Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology 17b. (Berlin: Springer, 1982).
17.
Zurück zum Zitat NKh. Abrikosov, V.B. Bankina, L.V. Poretskaya, L.E. Shelimova, and E.V. Skudnova, Semiconducting II-VI, IVVI and V- VI Compounds (New York: Plenum, 1969). NKh. Abrikosov, V.B. Bankina, L.V. Poretskaya, L.E. Shelimova, and E.V. Skudnova, Semiconducting II-VI, IVVI and V- VI Compounds (New York: Plenum, 1969).
18.
Zurück zum Zitat O. Medelung ed., Landolt Bornstein: Semiconductors Basic Data in Science and Technology. (Berlin: Springer, 1996). O. Medelung ed., Landolt Bornstein: Semiconductors Basic Data in Science and Technology. (Berlin: Springer, 1996).
19.
Zurück zum Zitat W.H. Strehlow, and E.L. Cook, J. Phys. Chem. Ref. Data 2, 163 (1973).CrossRef W.H. Strehlow, and E.L. Cook, J. Phys. Chem. Ref. Data 2, 163 (1973).CrossRef
20.
Zurück zum Zitat S. Ves, U. Schwarz, N.E. Christensen, K. Syassen, and M. Cardona, Phys. Rev. B 42, 9113 (1990).CrossRef S. Ves, U. Schwarz, N.E. Christensen, K. Syassen, and M. Cardona, Phys. Rev. B 42, 9113 (1990).CrossRef
21.
Zurück zum Zitat P.J. Ford, A.J. Miller, G.A. Saunders, Y.K. Yogurtçu, J.K. Furdyna, and M. Jaczynski, J. Phys. C Solid State Phys. 15, 657 (1982).CrossRef P.J. Ford, A.J. Miller, G.A. Saunders, Y.K. Yogurtçu, J.K. Furdyna, and M. Jaczynski, J. Phys. C Solid State Phys. 15, 657 (1982).CrossRef
22.
Zurück zum Zitat D. Berlincourt, H. Jafee, and L.R. Shlozawa, Phys. Rev. 129, 1009 (1963).CrossRef D. Berlincourt, H. Jafee, and L.R. Shlozawa, Phys. Rev. 129, 1009 (1963).CrossRef
23.
Zurück zum Zitat J. D. Bass, Mineral Physics and Crystallography: A Handbook of Physical Constants, ed. by T. J. Ahrens (American Geophysical Union, 1995), p 45. J. D. Bass, Mineral Physics and Crystallography: A Handbook of Physical Constants, ed. by T. J. Ahrens (American Geophysical Union, 1995), p 45.
25.
Zurück zum Zitat A. Lehoczky, D.A. Nelson, and C.R. Whitsett, Phys. Rev. 188, 1069 (1969).CrossRef A. Lehoczky, D.A. Nelson, and C.R. Whitsett, Phys. Rev. 188, 1069 (1969).CrossRef
27.
28.
Zurück zum Zitat A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593 (1967).CrossRef A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593 (1967).CrossRef
29.
Zurück zum Zitat S.J. Czyzak, W.M. Barker, R.C. Crane, and J.B. Howe, J. Opt. Soc. Am. 47, 240 (1957).CrossRef S.J. Czyzak, W.M. Barker, R.C. Crane, and J.B. Howe, J. Opt. Soc. Am. 47, 240 (1957).CrossRef
30.
Zurück zum Zitat X.J. Chen, A. Mintz, J.S. Hu, X.L. Hua, J. Zinck, and W.A. Goddard-III, J. Vac. Sci. Technol. B 13, 1715 (1995).CrossRef X.J. Chen, A. Mintz, J.S. Hu, X.L. Hua, J. Zinck, and W.A. Goddard-III, J. Vac. Sci. Technol. B 13, 1715 (1995).CrossRef
31.
Zurück zum Zitat J. Heyd, J.E. Peralta, and G.E. Scuseria, J. Chem. Phys. 123, 174101 (2005).CrossRef J. Heyd, J.E. Peralta, and G.E. Scuseria, J. Chem. Phys. 123, 174101 (2005).CrossRef
32.
33.
Zurück zum Zitat S. Ouendadji, S. Ghemid, H. Meradji, and H.F. El Haj, Comp. Mater. Sci. 50, 1460 (2011).CrossRef S. Ouendadji, S. Ghemid, H. Meradji, and H.F. El Haj, Comp. Mater. Sci. 50, 1460 (2011).CrossRef
34.
Zurück zum Zitat L. Guo, S. Zhang, W. Feng, G. Hu, and W. Li, J. Alloys Comp. 579, 583 (2013).CrossRef L. Guo, S. Zhang, W. Feng, G. Hu, and W. Li, J. Alloys Comp. 579, 583 (2013).CrossRef
35.
Zurück zum Zitat S. Sharma, A.S. Verma, B.K. Sarkar, R. Bhandari, and V.K. Jindal, AIP Conf. Proc. 1393, 229 (2011).CrossRef S. Sharma, A.S. Verma, B.K. Sarkar, R. Bhandari, and V.K. Jindal, AIP Conf. Proc. 1393, 229 (2011).CrossRef
36.
37.
Zurück zum Zitat M. Kitamura, S. Muramutsu, and W.A. Harrison, Phys. Rev. B 46, 1351 (1992).CrossRef M. Kitamura, S. Muramutsu, and W.A. Harrison, Phys. Rev. B 46, 1351 (1992).CrossRef
38.
Zurück zum Zitat N. Ullah, G. Murtaza, R. Khenata, K.M. Wong, and Z.A. Alahmed, Phase Transit. 87, 571 (2014).CrossRef N. Ullah, G. Murtaza, R. Khenata, K.M. Wong, and Z.A. Alahmed, Phase Transit. 87, 571 (2014).CrossRef
39.
Zurück zum Zitat B. Al Shafaay, H.F. El Haj, and M. Korek, Comp. Mater. Sci. 83, 107 (2014).CrossRef B. Al Shafaay, H.F. El Haj, and M. Korek, Comp. Mater. Sci. 83, 107 (2014).CrossRef
40.
Zurück zum Zitat I. Duz, I. Erdem, S. Ozdemir Kart, and V. Kuzucu, Arch. Mater. Sci. Eng. 79, 5 (2016).CrossRef I. Duz, I. Erdem, S. Ozdemir Kart, and V. Kuzucu, Arch. Mater. Sci. Eng. 79, 5 (2016).CrossRef
41.
Zurück zum Zitat Y. Xiao-Cui, Y. Jie, Z. En-Jie, and G. Chun-Xiao, Phys. Stat. Sol. C 8, 1703 (2011). Y. Xiao-Cui, Y. Jie, Z. En-Jie, and G. Chun-Xiao, Phys. Stat. Sol. C 8, 1703 (2011).
42.
Zurück zum Zitat R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, and M. Rabah, Comp. Mater. Sci. 38, 29 (2006).CrossRef R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, and M. Rabah, Comp. Mater. Sci. 38, 29 (2006).CrossRef
43.
Zurück zum Zitat R.A. Casali, and N.E. Christensen, Sol. Stat. Commun. 108, 793 (1998).CrossRef R.A. Casali, and N.E. Christensen, Sol. Stat. Commun. 108, 793 (1998).CrossRef
44.
Zurück zum Zitat M. Bilal, M. Shafiq, I. Ahmad, and I. Khan, J. Semicond. 35, 0720011 (2014).CrossRef M. Bilal, M. Shafiq, I. Ahmad, and I. Khan, J. Semicond. 35, 0720011 (2014).CrossRef
45.
46.
47.
Zurück zum Zitat O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, and S.G. Loui, Phys. Rev. B 50, 10780 (1994).CrossRef O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, and S.G. Loui, Phys. Rev. B 50, 10780 (1994).CrossRef
48.
Zurück zum Zitat F. Boutaiba, A. Zaoui, and M. Ferhat, Superlatt. Microstruct. 46, 823 (2009).CrossRef F. Boutaiba, A. Zaoui, and M. Ferhat, Superlatt. Microstruct. 46, 823 (2009).CrossRef
49.
Zurück zum Zitat T.D. Dzhafarov, F. Ongul, and I. Karabay, J. Phys. D Appl. Phys. 39, 3221 (2006).CrossRef T.D. Dzhafarov, F. Ongul, and I. Karabay, J. Phys. D Appl. Phys. 39, 3221 (2006).CrossRef
50.
Zurück zum Zitat D. Patidar, N.S. Saxena, and T.P. Sharma, J. Mod. Opt. 55, 79 (2008).CrossRef D. Patidar, N.S. Saxena, and T.P. Sharma, J. Mod. Opt. 55, 79 (2008).CrossRef
51.
Zurück zum Zitat G. Jia, N.A. Wang, L. Gong, and X. Fei, Chalcogen. Lett. 6, 463 (2009). G. Jia, N.A. Wang, L. Gong, and X. Fei, Chalcogen. Lett. 6, 463 (2009).
52.
53.
Zurück zum Zitat R. Shrivastava, S.C. Shrivastava, R.S. Singh, and A.K. Singh, Mater. Res. Exp. 2, 036401 (2015).CrossRef R. Shrivastava, S.C. Shrivastava, R.S. Singh, and A.K. Singh, Mater. Res. Exp. 2, 036401 (2015).CrossRef
54.
Zurück zum Zitat T.Y. Lui, J.A. Zapien, H. Tang, D.D.D. Ma, Y.K. Liu, C.S. Lee, S.T. Lee, S.L. Shi, and S.J. Xu, Nanotechnology 17, 5935 (2006).CrossRef T.Y. Lui, J.A. Zapien, H. Tang, D.D.D. Ma, Y.K. Liu, C.S. Lee, S.T. Lee, S.L. Shi, and S.J. Xu, Nanotechnology 17, 5935 (2006).CrossRef
55.
Zurück zum Zitat W. Huang, Z. Yuan, Y. Ren, Z. Ke, Z. Cai, and C. Yang, Phys. E. 108, 60 (2019).CrossRef W. Huang, Z. Yuan, Y. Ren, Z. Ke, Z. Cai, and C. Yang, Phys. E. 108, 60 (2019).CrossRef
58.
Zurück zum Zitat N.A. Noor, N. Ikram, S. Ali, S. Nazir, S.M. Alay-e-Abbas, and A. Shaukat, J. Alloys Comp. 507, 356 (2010).CrossRef N.A. Noor, N. Ikram, S. Ali, S. Nazir, S.M. Alay-e-Abbas, and A. Shaukat, J. Alloys Comp. 507, 356 (2010).CrossRef
59.
60.
Zurück zum Zitat M. Debbarma, U. Sarkar, B. Debnath, S. Chanda, D. Ghosh, R. Bhattacharjee, and S. Chattopadhyaya, Curr. Appl. Phys. 18, 698 (2018).CrossRef M. Debbarma, U. Sarkar, B. Debnath, S. Chanda, D. Ghosh, R. Bhattacharjee, and S. Chattopadhyaya, Curr. Appl. Phys. 18, 698 (2018).CrossRef
61.
Zurück zum Zitat G. Murtaza, N. Ullah, A. Rauf, R. Khenata, S. Bin Omran, M. Sajjad, and A. Waheed, Mater. Sci. Semicond. Process. 30, 462 (2015).CrossRef G. Murtaza, N. Ullah, A. Rauf, R. Khenata, S. Bin Omran, M. Sajjad, and A. Waheed, Mater. Sci. Semicond. Process. 30, 462 (2015).CrossRef
62.
Zurück zum Zitat M. Debbarma, U. Sarkar, B. Debnath, D. Ghosh, S. Chanda, R. Bhattacharjee, and S. Chattopadhyaya, J. Alloys Comp. 748, 446 (2018).CrossRef M. Debbarma, U. Sarkar, B. Debnath, D. Ghosh, S. Chanda, R. Bhattacharjee, and S. Chattopadhyaya, J. Alloys Comp. 748, 446 (2018).CrossRef
63.
Zurück zum Zitat S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun, Phys. Chem. Chem. Phys. 20, 13394 (2018).CrossRef S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun, Phys. Chem. Chem. Phys. 20, 13394 (2018).CrossRef
64.
Zurück zum Zitat S. Wang, H. Tian, C. Ren, J. Yu, and M. Sun, Sci. Rep. 8, 12009 (2018).CrossRef S. Wang, H. Tian, C. Ren, J. Yu, and M. Sun, Sci. Rep. 8, 12009 (2018).CrossRef
65.
Zurück zum Zitat Y. Luo, S. Wang, H. Shu, J.-P. Chou, K. Ren, J. Yu, and M. Sun, Semicond. Sci. Technol. 35, 125008 (2020).CrossRef Y. Luo, S. Wang, H. Shu, J.-P. Chou, K. Ren, J. Yu, and M. Sun, Semicond. Sci. Technol. 35, 125008 (2020).CrossRef
67.
Zurück zum Zitat L.-H. Ye, K. Hoang, A.J. Freeman, S.D. Mahanti, J. He, T.M. Tritt, and M.G. Kanatzidis, Phys. Rev. B 77, 245203 (2008).CrossRef L.-H. Ye, K. Hoang, A.J. Freeman, S.D. Mahanti, J. He, T.M. Tritt, and M.G. Kanatzidis, Phys. Rev. B 77, 245203 (2008).CrossRef
68.
Zurück zum Zitat P. Blaha, K. Schwarz, G. H. Madsen, D. Kbasnicka, and J. Luitz, in FP-LAPW+lo Program for Calculating Crystal Properties, ed. by K. Schwarz (Austria Techn. WIEN2K, 2001). P. Blaha, K. Schwarz, G. H. Madsen, D. Kbasnicka, and J. Luitz, in FP-LAPW+lo Program for Calculating Crystal Properties, ed. by K. Schwarz (Austria Techn. WIEN2K, 2001).
71.
Zurück zum Zitat O.K. Andersen, Phys. Rev. B 42, 3063 (1975). O.K. Andersen, Phys. Rev. B 42, 3063 (1975).
72.
Zurück zum Zitat M. Jamal, S.J. Asadabadi, I. Ahmed, and H.A.R. Aliabad, Comp. Mater. Sci. 95, 592 (2014).CrossRef M. Jamal, S.J. Asadabadi, I. Ahmed, and H.A.R. Aliabad, Comp. Mater. Sci. 95, 592 (2014).CrossRef
73.
Zurück zum Zitat J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRef J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRef
74.
75.
Zurück zum Zitat V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).CrossRef V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).CrossRef
76.
Zurück zum Zitat V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).CrossRef V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).CrossRef
78.
79.
82.
84.
Zurück zum Zitat M.F. Thorpe, S.D. Mahanti, and W. Jin, Vegard’s law in solids, Disorder in Condensed Matter Physics. ed. J.A. Blackman, and J. Taguena (Oxford: Clarendon, 1991), p. 22. M.F. Thorpe, S.D. Mahanti, and W. Jin, Vegard’s law in solids, Disorder in Condensed Matter Physics. ed. J.A. Blackman, and J. Taguena (Oxford: Clarendon, 1991), p. 22.
85.
Zurück zum Zitat M. Born, and K. Huang, Dynamics Theory of Crystal Lattices (Oxford: Oxford University Press, 1954). M. Born, and K. Huang, Dynamics Theory of Crystal Lattices (Oxford: Oxford University Press, 1954).
87.
Zurück zum Zitat A. Reuss, and Z. Angew, Math. Phys. 9, 49 (1929). A. Reuss, and Z. Angew, Math. Phys. 9, 49 (1929).
91.
Zurück zum Zitat I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka, 1983), p. 60. I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka, 1983), p. 60.
94.
Zurück zum Zitat P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, J. Appl. Phys. 84, 4891 (1998).CrossRef P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, J. Appl. Phys. 84, 4891 (1998).CrossRef
95.
97.
Zurück zum Zitat B. Liu, J.Y. Wang, F.Z. Li, and Y.C. Zhou, Acta Mater. 58, 4369 (2010).CrossRef B. Liu, J.Y. Wang, F.Z. Li, and Y.C. Zhou, Acta Mater. 58, 4369 (2010).CrossRef
98.
99.
Zurück zum Zitat M. Fox, Optical Properties of Solids (Oxford: Oxford University Press, 2001). M. Fox, Optical Properties of Solids (Oxford: Oxford University Press, 2001).
100.
Zurück zum Zitat N. Ullah, G. Murtaza, R. Khenata, K.M. Wong, and Z.A. Alahmed, Phase Trans. 87, 571 (2014).CrossRef N. Ullah, G. Murtaza, R. Khenata, K.M. Wong, and Z.A. Alahmed, Phase Trans. 87, 571 (2014).CrossRef
101.
Zurück zum Zitat N.W. Ashcroft, and N.D. Mermin, Solid State Physics (New York: Harcourt Brace College, 1976). N.W. Ashcroft, and N.D. Mermin, Solid State Physics (New York: Harcourt Brace College, 1976).
102.
Zurück zum Zitat G. Murtaza, I. Ahmad, B. Amin, A. Afaq, F. Ghafoor, and A. Benamrani, Phys. B 406, 2632 (2011).CrossRef G. Murtaza, I. Ahmad, B. Amin, A. Afaq, F. Ghafoor, and A. Benamrani, Phys. B 406, 2632 (2011).CrossRef
103.
104.
106.
Zurück zum Zitat C. Sifi, H. Meradrji, M. Silmani, S. Labidi, S. Ghemid, E.B. Hanneche, and F. El Haj Hassan, J. Phys. Cond. Mat. 21, 195401 (2009).CrossRef C. Sifi, H. Meradrji, M. Silmani, S. Labidi, S. Ghemid, E.B. Hanneche, and F. El Haj Hassan, J. Phys. Cond. Mat. 21, 195401 (2009).CrossRef
107.
Zurück zum Zitat M. Dressel, and G. Gruner, Electrodynamics of Solids (Cambridge: Cambridge University Press, 2001). M. Dressel, and G. Gruner, Electrodynamics of Solids (Cambridge: Cambridge University Press, 2001).
Metadaten
Titel
First-Principles Investigation of Structural, Elastic, Electronic, and Optical Properties of Cd1−x−yZnxHgyS Quaternary Alloys
verfasst von
Sayantika Chanda
Manish Debbarma
Debankita Ghosh
Bimal Debnath
Surya Chattopadhyaya
Publikationsdatum
31.05.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 8/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08986-6

Weitere Artikel der Ausgabe 8/2021

Journal of Electronic Materials 8/2021 Zur Ausgabe

Neuer Inhalt