Skip to main content
Erschienen in:

20.06.2023

First principles investigation of transition metal hydrides LiXH3 (X = Ti, Mn, and Cu) for hydrogen storage

verfasst von: Syed Farhan Ali Shah, G. Murtaza, Khawar Ismail, Hafiz Hamid Raza, Imran Javed Khan

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Renewable energy prices are decreasing, making it easier to make energy systems that are good for the environment. High-density storage for renewable energy is possible with hydrogen. This work focuses on the theoretical study of LiXH3 (where X = Ti, Mn, and Cu), including their structural, electronic, mechanical, thermoelectric, and hydrogen storage properties, using first-principles calculations. LiCuH3 is more stable than LiMnH3 and LiTiH3, based on the optimization graph. The electronic properties show the metallic nature of these studied hydrides. Born’s criterion indicates that all studied hydrides are brittle for various mechanical applications. LiTiH3, LiMnH3, and LiCuH3 are all thought to be able to store hydrogen with gravimetric storage capacities of 5.22%, 4.66%, and 4.11%, respectively. Based on how their thermoelectric properties change with temperature, all the materials under study can absorb heat energy, which shows that they are both electrically and thermally conductive.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pan, Y., Yu, E.: Theoretical prediction of structure, electronic and optical properties of VH2 hydrogen storage material. Int. J. Hydrog. Energy 47(64), 27608–27616 (2022)CrossRef Pan, Y., Yu, E.: Theoretical prediction of structure, electronic and optical properties of VH2 hydrogen storage material. Int. J. Hydrog. Energy 47(64), 27608–27616 (2022)CrossRef
2.
Zurück zum Zitat Usman, M., der Rehman, J., Tahir, M.B., Hussain, A.: Structural, electronics, magnetic, optical, mechanical and hydrogen storage properties of Ga-based hydride-perovskites XGaH3 (X= K, Li). Int. J. Energy Res. 46(11), 15617–15626 (2022)CrossRef Usman, M., der Rehman, J., Tahir, M.B., Hussain, A.: Structural, electronics, magnetic, optical, mechanical and hydrogen storage properties of Ga-based hydride-perovskites XGaH3 (X= K, Li). Int. J. Energy Res. 46(11), 15617–15626 (2022)CrossRef
3.
Zurück zum Zitat Vajeeston, P., Ravindran, P., Kjekshus, A., Fjellvåg, H.: Structural stability of alkali boron tetrahydrides ABH4 (A= Li, Na, K, Rb, Cs) from first principle calculation. J. Alloy. Comp. 387, 97 (2005)CrossRef Vajeeston, P., Ravindran, P., Kjekshus, A., Fjellvåg, H.: Structural stability of alkali boron tetrahydrides ABH4 (A= Li, Na, K, Rb, Cs) from first principle calculation. J. Alloy. Comp. 387, 97 (2005)CrossRef
4.
Zurück zum Zitat Wu, S., Tseng, K.Y., Kato, R., Wu, T.S., Large, A., Peng, Y.K., Tsang, S.C.E.: Rapid interchangeable hydrogen, hydride, and proton species at the interface of transition metal atom on oxide surface. J. Am. Chem. Soc. 143(24), 9105–9112 (2021)CrossRef Wu, S., Tseng, K.Y., Kato, R., Wu, T.S., Large, A., Peng, Y.K., Tsang, S.C.E.: Rapid interchangeable hydrogen, hydride, and proton species at the interface of transition metal atom on oxide surface. J. Am. Chem. Soc. 143(24), 9105–9112 (2021)CrossRef
5.
Zurück zum Zitat Ardahaie, S.S., Hosseini, M.J., Eisapour, M., Eisapour, A.H., Ranjbar, A.A.: A novel porous metal hydride tank for hydrogen energy storage and consumption assisted by PCM jackets and spiral tubes. J. Clean. Prod. 311, 127674 (2021)CrossRef Ardahaie, S.S., Hosseini, M.J., Eisapour, M., Eisapour, A.H., Ranjbar, A.A.: A novel porous metal hydride tank for hydrogen energy storage and consumption assisted by PCM jackets and spiral tubes. J. Clean. Prod. 311, 127674 (2021)CrossRef
6.
Zurück zum Zitat Nguyen, H.Q., Shabani, B.: Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. Int. J. Hydrog. Energy 46(62), 31699–31726 (2021)CrossRef Nguyen, H.Q., Shabani, B.: Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. Int. J. Hydrog. Energy 46(62), 31699–31726 (2021)CrossRef
7.
Zurück zum Zitat Gencer, A., Surucu, G.: Enhancement of hydrogen storage properties of Ca3CH antiperovskite compound with hydrogen doping. Int. J. Energy Res. 44(1), 567–573 (2020)CrossRef Gencer, A., Surucu, G.: Enhancement of hydrogen storage properties of Ca3CH antiperovskite compound with hydrogen doping. Int. J. Energy Res. 44(1), 567–573 (2020)CrossRef
8.
Zurück zum Zitat Gencer, A., Aydin, S., Surucu, O., Wang, X., Deligoz, E., Surucu, G.: Enhanced hydrogen storage of a functional material: Hf2CF2 MXene with Li decoration. Appl. Surf. Sci. 551, 149484 (2021)CrossRef Gencer, A., Aydin, S., Surucu, O., Wang, X., Deligoz, E., Surucu, G.: Enhanced hydrogen storage of a functional material: Hf2CF2 MXene with Li decoration. Appl. Surf. Sci. 551, 149484 (2021)CrossRef
9.
Zurück zum Zitat Zhou, F., Ding, G., Cheng, Z., Surucu, G., Chen, H., Wang, X.: Pnma metal hydride system LiBH: a superior topological semimetal with the coexistence of twofold and quadruple degenerate topological nodal lines. J. Phys. Condens. Matter 32(36), 365502 (2020)CrossRef Zhou, F., Ding, G., Cheng, Z., Surucu, G., Chen, H., Wang, X.: Pnma metal hydride system LiBH: a superior topological semimetal with the coexistence of twofold and quadruple degenerate topological nodal lines. J. Phys. Condens. Matter 32(36), 365502 (2020)CrossRef
10.
Zurück zum Zitat Lototskyy, M., Tolj, I., Klochko, Y., Davids, M.W., Swanepoel, D., Linkov, V.: Metal hydride hydrogen storage tank for fuel cell utility vehicles. Int. J. Hydrog. Energy 45(14), 7958–7967 (2020)CrossRef Lototskyy, M., Tolj, I., Klochko, Y., Davids, M.W., Swanepoel, D., Linkov, V.: Metal hydride hydrogen storage tank for fuel cell utility vehicles. Int. J. Hydrog. Energy 45(14), 7958–7967 (2020)CrossRef
11.
Zurück zum Zitat Sahoo, D.K., Jena, S., Dutta, J., Rana, A., Biswal, H.S.: Nature and strength of M-H··· S and M–H··· Se (M= Mn, Fe, & Co) hydrogen bond. J. Phys. Chem. A 123(11), 2227–2236 (2019)CrossRef Sahoo, D.K., Jena, S., Dutta, J., Rana, A., Biswal, H.S.: Nature and strength of M-H··· S and M–H··· Se (M= Mn, Fe, & Co) hydrogen bond. J. Phys. Chem. A 123(11), 2227–2236 (2019)CrossRef
12.
Zurück zum Zitat Baysal, M.B., Surucu, G., Deligoz, E., Ozısık, H.: The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications. Int. J. Hydrog. Energy 43(52), 23397–23408 (2018)CrossRef Baysal, M.B., Surucu, G., Deligoz, E., Ozısık, H.: The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications. Int. J. Hydrog. Energy 43(52), 23397–23408 (2018)CrossRef
13.
Zurück zum Zitat Sakintuna, B., Lamari-Darkrim, F., Hirscher, M.: Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32(9), 1121–1140 (2007)CrossRef Sakintuna, B., Lamari-Darkrim, F., Hirscher, M.: Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32(9), 1121–1140 (2007)CrossRef
14.
Zurück zum Zitat Ya’aini, N., Pillay A., Krishnan, L.G., Ripin, A., Synthesis of activated carbon doped with transition metals for hydrogen storage, E3S Web of Conferences, vol. 90, p. 01016. EDP Sciences (2019) Ya’aini, N., Pillay A., Krishnan, L.G., Ripin, A., Synthesis of activated carbon doped with transition metals for hydrogen storage, E3S Web of Conferences, vol. 90, p. 01016. EDP Sciences (2019)
15.
Zurück zum Zitat Goossens, N., Lapauw, T., Lambrinou, K., Vleugels, J.: Synthesis of MAX phase-based ceramics from early transition metal hydride powders. J. Eur. Ceram. Soc. 42(16), 7389–7402 (2022)CrossRef Goossens, N., Lapauw, T., Lambrinou, K., Vleugels, J.: Synthesis of MAX phase-based ceramics from early transition metal hydride powders. J. Eur. Ceram. Soc. 42(16), 7389–7402 (2022)CrossRef
16.
Zurück zum Zitat Afzal, M., Gupta, N., Mallik, A., Vishnulal, K.S., Sharma, P.: Experimental analysis of a metal hydride hydrogen storage system with hexagonal honeycomb-based heat transfer enhancements-part B. Int. J. Hydrog. Energy 46(24), 13131–13141 (2021)CrossRef Afzal, M., Gupta, N., Mallik, A., Vishnulal, K.S., Sharma, P.: Experimental analysis of a metal hydride hydrogen storage system with hexagonal honeycomb-based heat transfer enhancements-part B. Int. J. Hydrog. Energy 46(24), 13131–13141 (2021)CrossRef
17.
Zurück zum Zitat Einaga, M., Sakata, M., Ishikawa, T., Shimizu, K., Eremets, M.I., Drozdov, A.P., Ohishi, Y.: Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12(9), 835–838 (2016)CrossRef Einaga, M., Sakata, M., Ishikawa, T., Shimizu, K., Eremets, M.I., Drozdov, A.P., Ohishi, Y.: Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12(9), 835–838 (2016)CrossRef
18.
Zurück zum Zitat Barthélémy, H., Weber, M., Barbier, F.: Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrog. Energy 42(11), 7254–7262 (2017)CrossRef Barthélémy, H., Weber, M., Barbier, F.: Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrog. Energy 42(11), 7254–7262 (2017)CrossRef
19.
Zurück zum Zitat Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)CrossRef Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)CrossRef
20.
Zurück zum Zitat Dar, S.A., Srivastava, V., Sakalle, U.K.: A first-principles calculation on structural, electronic, magnetic, mechanical, and thermodynamic properties of SrAmO3. J. Supercond. Novel Magn 30(11), 3055–3063 (2017)CrossRef Dar, S.A., Srivastava, V., Sakalle, U.K.: A first-principles calculation on structural, electronic, magnetic, mechanical, and thermodynamic properties of SrAmO3. J. Supercond. Novel Magn 30(11), 3055–3063 (2017)CrossRef
21.
Zurück zum Zitat Avery, A.D., Zhou, B.H., Lee, J., Lee, E.S., Miller, E.M., Ihly, R., Ferguson, A.J.: Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 1(4), 1–9 (2016)CrossRef Avery, A.D., Zhou, B.H., Lee, J., Lee, E.S., Miller, E.M., Ihly, R., Ferguson, A.J.: Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 1(4), 1–9 (2016)CrossRef
22.
Zurück zum Zitat Patel, N., Miotello, A.: Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: a review and the perspectives to substitute noble metals. Int. J. Hydrog. Energy 40(3), 1429–1464 (2015)CrossRef Patel, N., Miotello, A.: Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: a review and the perspectives to substitute noble metals. Int. J. Hydrog. Energy 40(3), 1429–1464 (2015)CrossRef
23.
Zurück zum Zitat Gattia, D.M., Montone, A., Di Sarcina, I., Nacucchi, M., De Pascalis, F., Re, M., Antisari, M.V.: On the degradation mechanisms of Mg hydride pellets for hydrogen storage in tanks. Int. J. Hydrog. Energy 41(23), 9834–9840 (2016)CrossRef Gattia, D.M., Montone, A., Di Sarcina, I., Nacucchi, M., De Pascalis, F., Re, M., Antisari, M.V.: On the degradation mechanisms of Mg hydride pellets for hydrogen storage in tanks. Int. J. Hydrog. Energy 41(23), 9834–9840 (2016)CrossRef
24.
Zurück zum Zitat Kasumova, R.J., Safarova, G., Kerimova, N.: Ternary wide-bandgap chalcogenides LiGaS2 and BaGaS7 for the mid-IR. Int. J. Eng. Comput. Sci. 3, 7823 (2014) Kasumova, R.J., Safarova, G., Kerimova, N.: Ternary wide-bandgap chalcogenides LiGaS2 and BaGaS7 for the mid-IR. Int. J. Eng. Comput. Sci. 3, 7823 (2014)
25.
Zurück zum Zitat Coelho, P.M., Nguyen Cong, K., Bonilla, M., Kolekar, S., Phan, M.H., Avila, J., Batzill, M.: Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 123(22), 14089–14096 (2019)CrossRef Coelho, P.M., Nguyen Cong, K., Bonilla, M., Kolekar, S., Phan, M.H., Avila, J., Batzill, M.: Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 123(22), 14089–14096 (2019)CrossRef
26.
Zurück zum Zitat Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90(22), 1–4 (2014)CrossRef Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90(22), 1–4 (2014)CrossRef
27.
Zurück zum Zitat Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76(5), 1–15 (2007) Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76(5), 1–15 (2007)
28.
Zurück zum Zitat Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)CrossRef Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)CrossRef
29.
Zurück zum Zitat Wen, Y., Wang, L., Liu, H., Song, L.: Ab initio study of the elastic and mechanical properties of B19 TiAl. Crystals 7(2), 39 (2017)CrossRef Wen, Y., Wang, L., Liu, H., Song, L.: Ab initio study of the elastic and mechanical properties of B19 TiAl. Crystals 7(2), 39 (2017)CrossRef
30.
Zurück zum Zitat Conn´etable, D., Thomas, O.: First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi. Phys. Rev. B 79(9), 1–10 (2009)CrossRef Conn´etable, D., Thomas, O.: First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi. Phys. Rev. B 79(9), 1–10 (2009)CrossRef
31.
Zurück zum Zitat Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)CrossRef Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)CrossRef
32.
Zurück zum Zitat Surucu, G., Gencer, A., Candan, A., Gullu, H.H., Isik, M.: CaXH3 (X= Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications. Int. J. Energy Res. 44(3), 2345–2354 (2020)CrossRef Surucu, G., Gencer, A., Candan, A., Gullu, H.H., Isik, M.: CaXH3 (X= Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications. Int. J. Energy Res. 44(3), 2345–2354 (2020)CrossRef
33.
Zurück zum Zitat Bouhemadou, A., Khenata, R.: Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3. Comput. Mater. Sci. 39, 803 (2007)CrossRef Bouhemadou, A., Khenata, R.: Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3. Comput. Mater. Sci. 39, 803 (2007)CrossRef
34.
Zurück zum Zitat Ullah, R., Ali, M.A., Murtaza, G., Khan, A., Mahmood, A.: Ab initio study for the structural, electronic, magnetic, optical, and thermoelectric properties of K2OsX6 (X= Cl, Br) compounds. Int. J. Energy Res. 44(11), 9035–9049 (2020)CrossRef Ullah, R., Ali, M.A., Murtaza, G., Khan, A., Mahmood, A.: Ab initio study for the structural, electronic, magnetic, optical, and thermoelectric properties of K2OsX6 (X= Cl, Br) compounds. Int. J. Energy Res. 44(11), 9035–9049 (2020)CrossRef
35.
Zurück zum Zitat Amrich, O., Amine Monir, M.E., Baltach, H., Omran, S.B., Sun, X.W., Wang, X., Khenata, R.: Half-metallic ferrimagnetic characteristics of Co2YZ (Z= P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Novel Magn. 31(1), 241–250 (2018)CrossRef Amrich, O., Amine Monir, M.E., Baltach, H., Omran, S.B., Sun, X.W., Wang, X., Khenata, R.: Half-metallic ferrimagnetic characteristics of Co2YZ (Z= P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Novel Magn. 31(1), 241–250 (2018)CrossRef
36.
Zurück zum Zitat Azam S., Khan S.A., Goumri-Said, S.: Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A = K, Rb). Mater. Res. Bull. 70, 847–855 (2015)CrossRef Azam S., Khan S.A., Goumri-Said, S.: Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A = K, Rb). Mater. Res. Bull. 70, 847–855 (2015)CrossRef
37.
Zurück zum Zitat Vasileska, D., Khan, H.R., Ahmed, S.S., Kannan, G., Ringhofer, C.: Quantum and coulomb effects in nano devices, pp. 97–181. Springer, Nano-Electronic Devices (2011) Vasileska, D., Khan, H.R., Ahmed, S.S., Kannan, G., Ringhofer, C.: Quantum and coulomb effects in nano devices, pp. 97–181. Springer, Nano-Electronic Devices (2011)
38.
Zurück zum Zitat Reshak, A.: Thermoelectric properties for AA-and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 6, 98197–98207 (2016)CrossRef Reshak, A.: Thermoelectric properties for AA-and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 6, 98197–98207 (2016)CrossRef
39.
Zurück zum Zitat Kumar Gudelli, V., Kanchana, V., Vaitheeswaran, G., Svane, A., Christensen, N.E.: Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. J. Appl. Phys. 114(22), 223707 (2013)CrossRef Kumar Gudelli, V., Kanchana, V., Vaitheeswaran, G., Svane, A., Christensen, N.E.: Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. J. Appl. Phys. 114(22), 223707 (2013)CrossRef
40.
Zurück zum Zitat Ito, M., et al.: Electrical and thermal properties of titanium hydrides. J. Alloys Compd. 420(1–2), 25–28 (2006)CrossRef Ito, M., et al.: Electrical and thermal properties of titanium hydrides. J. Alloys Compd. 420(1–2), 25–28 (2006)CrossRef
41.
Zurück zum Zitat Kumar, V., Roy, D.R.: Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride. J. Mater. Sci. 53(11), 8302–8313 (2018)CrossRef Kumar, V., Roy, D.R.: Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride. J. Mater. Sci. 53(11), 8302–8313 (2018)CrossRef
42.
Zurück zum Zitat Takagi, S., Saitoh, H., Endo, N., Sato, R., Ikeshoji, T., Matsuo, M., Miwa, K., Aoki, K., Orimo, S.I.: Density-functional study of perovskite-type hydride LiNiH3 and its synthesis: mechanism for formation of metallic perovskite. Phys. Rev. B 87(12), 125134 (2013)CrossRef Takagi, S., Saitoh, H., Endo, N., Sato, R., Ikeshoji, T., Matsuo, M., Miwa, K., Aoki, K., Orimo, S.I.: Density-functional study of perovskite-type hydride LiNiH3 and its synthesis: mechanism for formation of metallic perovskite. Phys. Rev. B 87(12), 125134 (2013)CrossRef
43.
Zurück zum Zitat Tritt, T., Rowe, D.: Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton, FL (2005) Tritt, T., Rowe, D.: Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton, FL (2005)
44.
Zurück zum Zitat Ali, Z., Ahmad, I., Khan, I., Amin, B.: Electronic structure of cubic perovskite SnTaO3. Intermetallics 31, 287–291 (2012)CrossRef Ali, Z., Ahmad, I., Khan, I., Amin, B.: Electronic structure of cubic perovskite SnTaO3. Intermetallics 31, 287–291 (2012)CrossRef
45.
Zurück zum Zitat Gencer, A., Surucu, G.: Investigation of structural, electronic and lattice dynamical properties of XNiH3 (X= Li, Na and K) perovskite type hydrides and their hydrogen storage applications. Int. J. Hydrog. Energy 44(29), 15173–15182 (2019)CrossRef Gencer, A., Surucu, G.: Investigation of structural, electronic and lattice dynamical properties of XNiH3 (X= Li, Na and K) perovskite type hydrides and their hydrogen storage applications. Int. J. Hydrog. Energy 44(29), 15173–15182 (2019)CrossRef
46.
Zurück zum Zitat Goidin, V.V., Molchanov, V.V., Buyanov, R.A.: Mechanochemical synthesis of intermetallic hydrides at elevated hydrogen pressures. Inorg. Mater. 40(11), 1165–1168 (2004)CrossRef Goidin, V.V., Molchanov, V.V., Buyanov, R.A.: Mechanochemical synthesis of intermetallic hydrides at elevated hydrogen pressures. Inorg. Mater. 40(11), 1165–1168 (2004)CrossRef
47.
Zurück zum Zitat Walker, G. (ed.): Solid-state hydrogen storage: materials and chemistry. Elsevier (2008) Walker, G. (ed.): Solid-state hydrogen storage: materials and chemistry. Elsevier (2008)
Metadaten
Titel
First principles investigation of transition metal hydrides LiXH3 (X = Ti, Mn, and Cu) for hydrogen storage
verfasst von
Syed Farhan Ali Shah
G. Murtaza
Khawar Ismail
Hafiz Hamid Raza
Imran Javed Khan
Publikationsdatum
20.06.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02065-1