Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.08.2020 | Regular Paper | Ausgabe 10/2020

Knowledge and Information Systems 10/2020

Fisher-regularized supervised and semi-supervised extreme learning machine

Zeitschrift:
Knowledge and Information Systems > Ausgabe 10/2020
Autoren:
Jun Ma, Yakun Wen, Liming Yang
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The structural information of data contains useful prior knowledge and thus is important for designing classifiers. Extreme learning machine (ELM) has been a potential technique in handling classification problems. However, it only simply considers the prior class-based structural information and ignores the prior knowledge from statistics and geometry of data. In this paper, to capture more structural information of the data, we first propose a Fisher-regularized extreme learning machine (called Fisher-ELM) by applying Fisher regularization into the ELM learning framework, the main goals of which is to build an optimal hyperplane such that the output weight and within-class scatter are minimized simultaneously. The proposed Fisher-ELM reflects both the global characteristics and local properties of samples. Intuitively, the Fisher-ELM can approximatively fulfill the Fisher criterion and can obtain good statistical separability. Then, we exploit graph structural formulation to obtain semi-supervised Fisher-ELM version (called Lap-FisherELM) by introducing manifold regularization that characterizes the geometric information of the marginal distribution embedded in unlabeled samples. An efficient successive overrelaxation algorithm is used to solve the proposed Fisher-ELM and Lap-FisherELM, which converges linearly to a solution, and can process very large datasets that need not reside in memory. The proposed Fisher-ELM and Lap-FisherELM do not need to deal with the extra matrix and burden the computations related to the variable switching, which makes them more suitable for relatively large-scale problems. Experiments on several datasets verify the effectiveness of the proposed methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

Knowledge and Information Systems 10/2020 Zur Ausgabe

Premium Partner