Skip to main content
Erschienen in: Flow, Turbulence and Combustion 4/2018

03.07.2018

Flame Curvature Distribution in High Pressure Turbulent Bunsen Premixed Flames

verfasst von: M. Klein, H. Nachtigal, M. Hansinger, M. Pfitzner, N. Chakraborty

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flame curvature statistics of turbulent premixed Bunsen flames have been analysed in this paper using a Direct Numerical Simulation (DNS) database of turbulent Bunsen flames at ambient and elevated pressures. In order to be able to perform a large parametric study in terms of pressure, heat release parameter, turbulence conditions and nozzle diameter, a single step Arrhenius type irreversible chemistry has been used for the purpose of computational economy, where thermo-chemical parameters are adjusted to match the behavior of stoichiometric methane-air flames. This analysis focuses on the characterization of the local flame geometry in response to turbulence and hydro-dynamic instability. The shape of the flame front is found to be consistent with existing experimental data. Although the Darrieus Landau instability promotes cusp formation, a qualitatively similar flame morphology can be observed for hydro-dynamically stable flames. A criterion has been suggested for the curvature PDF to become negatively skewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kobayashi, H.: Experimental study of high-pressure turbulent premixed flames. Exp. Thermal Fluid Sci. 26, 375–387 (2002)CrossRef Kobayashi, H.: Experimental study of high-pressure turbulent premixed flames. Exp. Thermal Fluid Sci. 26, 375–387 (2002)CrossRef
2.
Zurück zum Zitat Keppeler, R., Tangermann, E., Allaudin, A., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turb. Combust. 92(3), 767–802 (2014)CrossRef Keppeler, R., Tangermann, E., Allaudin, A., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turb. Combust. 92(3), 767–802 (2014)CrossRef
4.
Zurück zum Zitat Creta, F., Matalon, M.: Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225–264 (2011)MathSciNetCrossRef Creta, F., Matalon, M.: Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225–264 (2011)MathSciNetCrossRef
5.
Zurück zum Zitat Akkerman, V., Bychkov, V.: Velocity of weakly turbulent flames of finite thickness. Combust. Theory Mod. 9, 323–351 (2005)MathSciNetCrossRef Akkerman, V., Bychkov, V.: Velocity of weakly turbulent flames of finite thickness. Combust. Theory Mod. 9, 323–351 (2005)MathSciNetCrossRef
6.
Zurück zum Zitat Fogla, N., Creta, F., Matalon, M.: The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments. Combust. Flame 175, 155–169 (2017)CrossRef Fogla, N., Creta, F., Matalon, M.: The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments. Combust. Flame 175, 155–169 (2017)CrossRef
7.
Zurück zum Zitat Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94, 053102 (2016)MathSciNetCrossRef Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94, 053102 (2016)MathSciNetCrossRef
8.
Zurück zum Zitat Creta, F., Matalon, M.: Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33, 1087–1094 (2011)CrossRef Creta, F., Matalon, M.: Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33, 1087–1094 (2011)CrossRef
9.
Zurück zum Zitat Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRef Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRef
10.
Zurück zum Zitat Pelce, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)CrossRef Pelce, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)CrossRef
11.
Zurück zum Zitat Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust Sci. 31, 1–73 (2004)CrossRef Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust Sci. 31, 1–73 (2004)CrossRef
12.
Zurück zum Zitat Shepherd, I.G., Ashurst, W.T.: Flame front geometry in premixed turbulent flames. Proc. Combust. Inst. 24, 485–491 (1992)CrossRef Shepherd, I.G., Ashurst, W.T.: Flame front geometry in premixed turbulent flames. Proc. Combust. Inst. 24, 485–491 (1992)CrossRef
13.
Zurück zum Zitat Peters, N.: Turbulent Combustion. Cambridge University Press, UK (2000)CrossRef Peters, N.: Turbulent Combustion. Cambridge University Press, UK (2000)CrossRef
14.
Zurück zum Zitat Law, C.K., Sung, C.J.: Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459–505 (2000)CrossRef Law, C.K., Sung, C.J.: Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459–505 (2000)CrossRef
15.
Zurück zum Zitat Plessing, T., Kortschik, C., Mansour, M.S., Peters, N., Cheng, R.K.: Measurement of the turbulent burning velocity and the structure of premixed flames on a low swirl burner. Proc. Combust. Inst. 28, 359–368 (2000)CrossRef Plessing, T., Kortschik, C., Mansour, M.S., Peters, N., Cheng, R.K.: Measurement of the turbulent burning velocity and the structure of premixed flames on a low swirl burner. Proc. Combust. Inst. 28, 359–368 (2000)CrossRef
16.
Zurück zum Zitat Troiani, G., Creta, F., Matalon, M.: Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35, 1451–1459 (2015)CrossRef Troiani, G., Creta, F., Matalon, M.: Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35, 1451–1459 (2015)CrossRef
17.
Zurück zum Zitat Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-Landau instability. Combust. Sci. Tech. 104, 143–167 (1995)CrossRef Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-Landau instability. Combust. Sci. Tech. 104, 143–167 (1995)CrossRef
18.
Zurück zum Zitat Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)CrossRef Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)CrossRef
19.
Zurück zum Zitat Jenkins, K.W., Cant, R.S.: Direct numerical simulation of turbulent flame Kernel. In: Recent Advances in DNS and LES, pp. 191–202. Springer (1999) Jenkins, K.W., Cant, R.S.: Direct numerical simulation of turbulent flame Kernel. In: Recent Advances in DNS and LES, pp. 191–202. Springer (1999)
20.
Zurück zum Zitat Klein, M., Chakraborty, N., Jenkins, K., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids 18, 055102 (2006)MathSciNetCrossRef Klein, M., Chakraborty, N., Jenkins, K., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids 18, 055102 (2006)MathSciNetCrossRef
21.
Zurück zum Zitat Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust., 473679 (2011) Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust., 473679 (2011)
22.
Zurück zum Zitat Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)CrossRef Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)CrossRef
23.
Zurück zum Zitat Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996)CrossRef Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996)CrossRef
24.
Zurück zum Zitat Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)CrossRef Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)CrossRef
25.
Zurück zum Zitat Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef
26.
Zurück zum Zitat Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame Kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)CrossRef Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame Kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)CrossRef
28.
Zurück zum Zitat Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Hydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theor. Modell accepted (2018) Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Hydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theor. Modell accepted (2018)
30.
Zurück zum Zitat Lachaux, T., Halter, F., Chauveaua, C., Gökalp, I., Shepherd, I.G.: Flame front analysis of high-pressure turbulent lean premixed methane–air flames. Proc. Combust. Inst. 30, 819–826 (2005)CrossRef Lachaux, T., Halter, F., Chauveaua, C., Gökalp, I., Shepherd, I.G.: Flame front analysis of high-pressure turbulent lean premixed methane–air flames. Proc. Combust. Inst. 30, 819–826 (2005)CrossRef
31.
Zurück zum Zitat Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proc. Combust. Inst. 35, 1527–1535 (2015)CrossRef Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proc. Combust. Inst. 35, 1527–1535 (2015)CrossRef
32.
Zurück zum Zitat Tamadonfar, P., Gülder, Ö.L.: Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Exp. Thermal Fluid Sci. 73, 42–48 (2016)CrossRef Tamadonfar, P., Gülder, Ö.L.: Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Exp. Thermal Fluid Sci. 73, 42–48 (2016)CrossRef
33.
Zurück zum Zitat Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34, 1519–1526 (2013)CrossRef Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34, 1519–1526 (2013)CrossRef
34.
Zurück zum Zitat Chaudhuri, V.Y., Akkerman, C.K.: Law spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)CrossRef Chaudhuri, V.Y., Akkerman, C.K.: Law spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)CrossRef
35.
Zurück zum Zitat Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – Part I: General formulation. Combust. Flame 61, 87–102 (1985)CrossRef Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – Part I: General formulation. Combust. Flame 61, 87–102 (1985)CrossRef
36.
Zurück zum Zitat Cant, R.S., Rutland, C.J., Trouve, A.: Statistics for laminar flamelet modeling. In: Proceedings of the 1990 Summer Program. Stanford Univ (1990) Cant, R.S., Rutland, C.J., Trouve, A.: Statistics for laminar flamelet modeling. In: Proceedings of the 1990 Summer Program. Stanford Univ (1990)
37.
Zurück zum Zitat Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of Large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRef Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of Large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRef
38.
Zurück zum Zitat Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31, 1369–1375 (2007)CrossRef Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31, 1369–1375 (2007)CrossRef
Metadaten
Titel
Flame Curvature Distribution in High Pressure Turbulent Bunsen Premixed Flames
verfasst von
M. Klein
H. Nachtigal
M. Hansinger
M. Pfitzner
N. Chakraborty
Publikationsdatum
03.07.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 4/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9951-1

Weitere Artikel der Ausgabe 4/2018

Flow, Turbulence and Combustion 4/2018 Zur Ausgabe

OriginalPaper

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.