Skip to main content
Erschienen in:

27.01.2023

Flame Spread Transition to Regression of Thick Fuel in Oxygen-Limited Concurrent Flow

verfasst von: Feng Zhu, Xinyan Huang, Xiao Chen, Shuangfeng Wang

Erschienen in: Fire Technology | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flame behaviors in a narrow gap with low-velocity airflow are significantly different from buoyancy-controlled flames in open areas. The conditions experienced by microgravity flame may be reproduced in a narrow gap environment where the buoyancy is limited. This work studies the behaviors of near-limit concurrent flame spread over a thick solid fuel in an oxygen-limited narrow channel with 3 mm and 5 mm heights. As the concurrent airflow and oxygen concentration decrease below a critical value, the flame spread transitions to the fuel-regression mode, burning like a candle flame. Further reducing the oxygen, the flame tip tilts towards the inflow like the flame in the opposed flow. A flammability map is found to define three regimes (1) concurrent flame spread, (2) fuel regression, and (3) extinction. The fuel-regression regime is characterized by a fuel regression angle of over 30° and a global flame equivalence ratio of over 1.9. The existence of the fuel-regression mode extends the low-flow flammability limit in the concurrent flow. The ‘round-trip’ flame phenomenon is observed where the 1st-stage near-limit opposed flame spread transitions to the 2nd-stage fuel regression in the concurrent flow. This work provides new insights into the concurrent flame-spread and extinction behavior under oxygen-limited and microgravity environments.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Williams FA (1977) Mechanisms of fire spread. Symp Combust 16:1281–1294CrossRef Williams FA (1977) Mechanisms of fire spread. Symp Combust 16:1281–1294CrossRef
2.
Zurück zum Zitat Gollner MJ, Miller CH, Tang W, Singh AV (2017) The effect of flow and geometry on concurrent flame spread. Fire Saf J 91:68–78CrossRef Gollner MJ, Miller CH, Tang W, Singh AV (2017) The effect of flow and geometry on concurrent flame spread. Fire Saf J 91:68–78CrossRef
3.
Zurück zum Zitat T’ien JS, Shih HY, Jiang CB, Ross HD, Miller FJ, Fernandez-Pello AC et al (2001) Mechanisms of flame spread and smolder wave propagation. In: Ross HD (ed) Microgravity combustion: fire in free fall. Academic Press, Massachusetts, pp 299–418 T’ien JS, Shih HY, Jiang CB, Ross HD, Miller FJ, Fernandez-Pello AC et al (2001) Mechanisms of flame spread and smolder wave propagation. In: Ross HD (ed) Microgravity combustion: fire in free fall. Academic Press, Massachusetts, pp 299–418
4.
Zurück zum Zitat Fernandez-Pello AC (1984) Flame spread modeling. Combust Sci Technol 39:119–134CrossRef Fernandez-Pello AC (1984) Flame spread modeling. Combust Sci Technol 39:119–134CrossRef
5.
Zurück zum Zitat Loh HT, Fernandez-Pello AC (1985) A study of the controlling mechanisms of flow assisted flame spread. Symp Combust 20:1575–1582CrossRef Loh HT, Fernandez-Pello AC (1985) A study of the controlling mechanisms of flow assisted flame spread. Symp Combust 20:1575–1582CrossRef
6.
Zurück zum Zitat Osorio AF, Fernandez-Pello C, Urban DL, Ruff GA (2012) External radiant flux and oxygen concentration as conditions for concurrent flame spread in fabrics. 42nd International Conference on Environmental Systems 2012:3538 Osorio AF, Fernandez-Pello C, Urban DL, Ruff GA (2012) External radiant flux and oxygen concentration as conditions for concurrent flame spread in fabrics. 42nd International Conference on Environmental Systems 2012:3538
7.
Zurück zum Zitat Thomsen M, Fernandez-Pello C, Ruff GA, Urban DL (2019) Buoyancy effects on concurrent flame spread over thick PMMA. Combust Flame 199:279–291CrossRef Thomsen M, Fernandez-Pello C, Ruff GA, Urban DL (2019) Buoyancy effects on concurrent flame spread over thick PMMA. Combust Flame 199:279–291CrossRef
8.
Zurück zum Zitat Zhou L, Fernandez-Pello AC (1991) Concurrent turbulent flame spread. Symp Combust 23:1709–1714CrossRef Zhou L, Fernandez-Pello AC (1991) Concurrent turbulent flame spread. Symp Combust 23:1709–1714CrossRef
9.
Zurück zum Zitat Zhu F, Lu Z, Wang S (2016) Flame spread and extinction over a thick solid fuel in low-velocity opposed and concurrent flows. Microgravity Sci Technol 28:87–94CrossRef Zhu F, Lu Z, Wang S (2016) Flame spread and extinction over a thick solid fuel in low-velocity opposed and concurrent flows. Microgravity Sci Technol 28:87–94CrossRef
10.
Zurück zum Zitat Thomsen M, Huang X, Fernandez-Pello C, Urban DL, Ruff GA (2019) Concurrent flame spread over externally heated Nomex under mixed convection flow. Proc Combust Inst 37: 3801–3808 Thomsen M, Huang X, Fernandez-Pello C, Urban DL, Ruff GA (2019) Concurrent flame spread over externally heated Nomex under mixed convection flow. Proc Combust Inst 37: 3801–3808
11.
Zurück zum Zitat Thomsen M, Fernandez-Pello C, Urban DL, Ruff GA, Olson SL (2019) On simulating concurrent flame spread in reduced gravity by reducing ambient pressure. Proc Combust Inst 37:3793–3800 Thomsen M, Fernandez-Pello C, Urban DL, Ruff GA, Olson SL (2019) On simulating concurrent flame spread in reduced gravity by reducing ambient pressure. Proc Combust Inst 37:3793–3800
12.
Zurück zum Zitat NASA Technical Standard (1998) Flammability, odor, offgassing, and compatibility requirements and test procedures for materials in environments that support combustion NASA Technical Standard (1998) Flammability, odor, offgassing, and compatibility requirements and test procedures for materials in environments that support combustion
13.
Zurück zum Zitat Center ESNEENE space research and technology (2014) Space product assurance - Flammability testing for the screening of space materials. EN 16602–70–21 Center ESNEENE space research and technology (2014) Space product assurance - Flammability testing for the screening of space materials. EN 16602–70–21
14.
Zurück zum Zitat ISO 11925–2 (2002) Reaction to fire tests-Ignitability of building products subjected to direct impingement of flame-Part 2: Single-flame source test ISO 11925–2 (2002) Reaction to fire tests-Ignitability of building products subjected to direct impingement of flame-Part 2: Single-flame source test
15.
Zurück zum Zitat Zhu N, Huang X, Fang J, Yang L, Hu L (2021) Transitional flame-spread and fuel-regression behaviors under the change of concurrent wind. Fire Saf J 120:103015CrossRef Zhu N, Huang X, Fang J, Yang L, Hu L (2021) Transitional flame-spread and fuel-regression behaviors under the change of concurrent wind. Fire Saf J 120:103015CrossRef
16.
Zurück zum Zitat Olson SL, Ferkul PV, Marcum JW (2019) High-speed video analysis of flame oscillations along a PMMA rod after stagnation region blowoff. Proc Combust Inst 37:1555–1562 Olson SL, Ferkul PV, Marcum JW (2019) High-speed video analysis of flame oscillations along a PMMA rod after stagnation region blowoff. Proc Combust Inst 37:1555–1562
17.
Zurück zum Zitat Marcum JW, Ferkul PV, Olson SL (2019) PMMA rod stagnation region flame blowoff limits at various radii, oxygen concentrations, and mixed stretch rates. Proc Combust Inst 37:4001–4008 Marcum JW, Ferkul PV, Olson SL (2019) PMMA rod stagnation region flame blowoff limits at various radii, oxygen concentrations, and mixed stretch rates. Proc Combust Inst 37:4001–4008
18.
Zurück zum Zitat Tseng Y-T, Tien JS (2010) Limiting length, steady spread, and nongrowing flames in concurrent flow over solids. J Heat Transfer 132:091201CrossRef Tseng Y-T, Tien JS (2010) Limiting length, steady spread, and nongrowing flames in concurrent flow over solids. J Heat Transfer 132:091201CrossRef
19.
Zurück zum Zitat Olson SL, Ruff GA, Ferkul PV, Owens JC, Easton J, Liao YT, et al (2023) The effect of duct size, sample size, and fuel composition on concurrent flame spread over large cellulose samples in microgravity. Combust Flame 248:112559 Olson SL, Ruff GA, Ferkul PV, Owens JC, Easton J, Liao YT, et al (2023) The effect of duct size, sample size, and fuel composition on concurrent flame spread over large cellulose samples in microgravity. Combust Flame 248:112559
20.
Zurück zum Zitat Urban DL, Ferkul P, Olson S, Ruff GA, Easton J, T’ien JS et al (2019) Flame spread: effects of microgravity and scale. Combust Flame 199:168–182CrossRef Urban DL, Ferkul P, Olson S, Ruff GA, Easton J, T’ien JS et al (2019) Flame spread: effects of microgravity and scale. Combust Flame 199:168–182CrossRef
21.
Zurück zum Zitat Ivanov AV, Balashov YV, Andreeva TV, Melikhov AS (1999) Experimental Flammability Verification in Space of Material NASA/CR-1999–209405 Ivanov AV, Balashov YV, Andreeva TV, Melikhov AS (1999) Experimental Flammability Verification in Space of Material NASA/CR-1999–209405
22.
Zurück zum Zitat Olson SL, Miller FJ, Jahangirian S, Wichman IS (2009) Flame spread over thin fuels in actual and simulated microgravity conditions. Combust Flame 156:1214–1226CrossRef Olson SL, Miller FJ, Jahangirian S, Wichman IS (2009) Flame spread over thin fuels in actual and simulated microgravity conditions. Combust Flame 156:1214–1226CrossRef
23.
Zurück zum Zitat Zhang X, Yu Y (2011) Experimental studies on the three-dimensional effects of opposed-flow flame spread over thin solid materials. Combust Flame 158:1193–1200CrossRef Zhang X, Yu Y (2011) Experimental studies on the three-dimensional effects of opposed-flow flame spread over thin solid materials. Combust Flame 158:1193–1200CrossRef
24.
Zurück zum Zitat Hossain S, Wichman IS, Sidebotham GW, Olson SL, Miller FJ (2018) Influence of gap height and flow field on global stoichiometry and heat losses during opposed flow flame spread over thin fuels in simulated microgravity. Combust Flame 193:133–144CrossRef Hossain S, Wichman IS, Sidebotham GW, Olson SL, Miller FJ (2018) Influence of gap height and flow field on global stoichiometry and heat losses during opposed flow flame spread over thin fuels in simulated microgravity. Combust Flame 193:133–144CrossRef
25.
Zurück zum Zitat Hossain S, Wichman IS, Miller FJ, Olson SL (2020) Opposed flow flame spread over thermally thick solid fuels: buoyant flow suppression, stretch rate theory, and the regressive burning regime. Combust Flame 219:57–69CrossRef Hossain S, Wichman IS, Miller FJ, Olson SL (2020) Opposed flow flame spread over thermally thick solid fuels: buoyant flow suppression, stretch rate theory, and the regressive burning regime. Combust Flame 219:57–69CrossRef
26.
Zurück zum Zitat Zhu F, Wang S, Lu Z (2018) A comparative study of near-limit flame spread over a thick solid in space- and ground-based experiments. Microgravity Sci Technol 30:943–949CrossRef Zhu F, Wang S, Lu Z (2018) A comparative study of near-limit flame spread over a thick solid in space- and ground-based experiments. Microgravity Sci Technol 30:943–949CrossRef
27.
Zurück zum Zitat Zhu F, Wang S, Lu Z, Wu C (2021) Opposed flame spread over thick solid fuels under influence of sub-atmospheric pressure and low-velocity flow. Fire Saf J 125:103430CrossRef Zhu F, Wang S, Lu Z, Wu C (2021) Opposed flame spread over thick solid fuels under influence of sub-atmospheric pressure and low-velocity flow. Fire Saf J 125:103430CrossRef
28.
Zurück zum Zitat Vetturini A, Cui W, Liao YT, Olson S, Ferkul P (2020) Flame spread over ultra-thin solids: effect of area density and concurrent-opposed spread reversal phenomenon. Fire Technol 56:91–111CrossRef Vetturini A, Cui W, Liao YT, Olson S, Ferkul P (2020) Flame spread over ultra-thin solids: effect of area density and concurrent-opposed spread reversal phenomenon. Fire Technol 56:91–111CrossRef
29.
Zurück zum Zitat Olson SL, Miller FJ (2009) Experimental comparison of opposed and concurrent flame spread in a forced convective microgravity environment. Proc Combust Inst 32:2445–2452 Olson SL, Miller FJ (2009) Experimental comparison of opposed and concurrent flame spread in a forced convective microgravity environment. Proc Combust Inst 32:2445–2452
30.
Zurück zum Zitat Zhu F, Lu Z, Wang S, Yin Y (2019) Microgravity diffusion flame spread over a thick solid in step-changed low-velocity opposed flows. Combust Flame 205:55–67CrossRef Zhu F, Lu Z, Wang S, Yin Y (2019) Microgravity diffusion flame spread over a thick solid in step-changed low-velocity opposed flows. Combust Flame 205:55–67CrossRef
31.
Zurück zum Zitat Zhou S, Qi X, Gao J, Huang X, Zhang D (2022) Countercurrent flame propagation and quenching behaviour in a packed bed of spherical PMMA beads in an upward flow of pure oxygen. Combust Sci Technol (in press) Zhou S, Qi X, Gao J, Huang X, Zhang D (2022) Countercurrent flame propagation and quenching behaviour in a packed bed of spherical PMMA beads in an upward flow of pure oxygen. Combust Sci Technol (in press)
32.
Zurück zum Zitat Matsuoka T, Nakashima K, Nakamura Y, Noda S (2017) Appearance of flamelets spreading over thermally thick fuel. Proc Combust Inst 36:3019–3026 Matsuoka T, Nakashima K, Nakamura Y, Noda S (2017) Appearance of flamelets spreading over thermally thick fuel. Proc Combust Inst 36:3019–3026
33.
Zurück zum Zitat Wang SF, Zhu F, Lu ZB (2016) Near-limit flame spread over thick solid fuels. J Combust Sci Technol 22:402–407 Wang SF, Zhu F, Lu ZB (2016) Near-limit flame spread over thick solid fuels. J Combust Sci Technol 22:402–407
34.
Zurück zum Zitat Wang S, Wang S, Zhu K, Xiao Y, Lu Z (2016) Near quenching limit instabilities of concurrent flame spread over thin solid fuel. Combust Sci Technol 188:451–471CrossRef Wang S, Wang S, Zhu K, Xiao Y, Lu Z (2016) Near quenching limit instabilities of concurrent flame spread over thin solid fuel. Combust Sci Technol 188:451–471CrossRef
35.
Zurück zum Zitat Olson SL, Urban DL, Ruff GA, Ferkul PV, Toth B, Eigenbrod C et al (2020) Concurrent flame spread over two-sided thick PMMA Slabs in microgravity. Fire Technol 56:49–69CrossRef Olson SL, Urban DL, Ruff GA, Ferkul PV, Toth B, Eigenbrod C et al (2020) Concurrent flame spread over two-sided thick PMMA Slabs in microgravity. Fire Technol 56:49–69CrossRef
36.
Zurück zum Zitat Jiang L, He JJ, Sun JH (2018) Sample width and thickness effects on upward flame spread over PMMA surface. J Hazard Mater 342:114–120CrossRef Jiang L, He JJ, Sun JH (2018) Sample width and thickness effects on upward flame spread over PMMA surface. J Hazard Mater 342:114–120CrossRef
37.
Zurück zum Zitat Huang X, Link S, Rodriguez A, Thomsen M, Olson S, Ferkul P, et al (2019) Transition from opposed flame spread to fuel regression and blow off: Effect of flow, atmosphere, and microgravity. Proc Combust Inst 37:4117–4126 Huang X, Link S, Rodriguez A, Thomsen M, Olson S, Ferkul P, et al (2019) Transition from opposed flame spread to fuel regression and blow off: Effect of flow, atmosphere, and microgravity. Proc Combust Inst 37:4117–4126
38.
Zurück zum Zitat Olson SL (1991) Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects. Combust Sci Technol 76:233–249CrossRef Olson SL (1991) Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects. Combust Sci Technol 76:233–249CrossRef
39.
Zurück zum Zitat Carmignani L, Rhoades B, Bhattacharjee S (2018) Correlation of burning rate with spread rate for downward flame spread over PMMA. Fire Technol 54:613–624CrossRef Carmignani L, Rhoades B, Bhattacharjee S (2018) Correlation of burning rate with spread rate for downward flame spread over PMMA. Fire Technol 54:613–624CrossRef
40.
Zurück zum Zitat Thomsen M, Fernandez-Pello C, Huang X, Olson S, Ferkul P (2020) Buoyancy effect on downward flame spread over PMMA cylinders. Fire Technol 56:247–269CrossRef Thomsen M, Fernandez-Pello C, Huang X, Olson S, Ferkul P (2020) Buoyancy effect on downward flame spread over PMMA cylinders. Fire Technol 56:247–269CrossRef
41.
Zurück zum Zitat Fujita O (2015) Solid combustion research in microgravity as a basis of fire safety in space. Proc Combust Inst 35:2487–2502 Fujita O (2015) Solid combustion research in microgravity as a basis of fire safety in space. Proc Combust Inst 35:2487–2502
42.
Zurück zum Zitat Kumar A, Shih HY, T’ien JS (2003) A comparison of extinction limits and spreading rates in opposed and concurrent spreading flames over thin solids. Combust Flame 132:667–677CrossRef Kumar A, Shih HY, T’ien JS (2003) A comparison of extinction limits and spreading rates in opposed and concurrent spreading flames over thin solids. Combust Flame 132:667–677CrossRef
43.
Zurück zum Zitat Lyons KM (2007) Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog Energy Combust Sci 33:211–231CrossRef Lyons KM (2007) Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog Energy Combust Sci 33:211–231CrossRef
44.
Zurück zum Zitat Huang X, Rein G (2019) Upward-and-downward spread of smoldering peat fire. Proc Combust Inst 37:4025–4033 Huang X, Rein G (2019) Upward-and-downward spread of smoldering peat fire. Proc Combust Inst 37:4025–4033
45.
Zurück zum Zitat Gao J, Qi X, Zhang D, Matsuoka T, Nakamura Y (2021) Propagation of glowing combustion front in a packed bed of activated carbon particles and the role of CO oxidation. Proc Combust Inst 38:5023–5032 Gao J, Qi X, Zhang D, Matsuoka T, Nakamura Y (2021) Propagation of glowing combustion front in a packed bed of activated carbon particles and the role of CO oxidation. Proc Combust Inst 38:5023–5032
Metadaten
Titel
Flame Spread Transition to Regression of Thick Fuel in Oxygen-Limited Concurrent Flow
verfasst von
Feng Zhu
Xinyan Huang
Xiao Chen
Shuangfeng Wang
Publikationsdatum
27.01.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01369-9

Weitere Artikel der Ausgabe 2/2023

Fire Technology 2/2023 Zur Ausgabe