Skip to main content

2016 | OriginalPaper | Buchkapitel

21. Flaming Ignition of Solid Fuels

verfasst von : José Torero

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter will describe how heating of a solid fuel leads to flaming ignition. The discussion will be centred on flaming ignition of solid fuels but will not address smouldering or spontaneous ignition since these subjects will be covered in Chaps. 19 and 20 respectively. Thus, the presence of a source of heat decoupled from the solid and fuel gasification will be assumed throughout the chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Babrauskas, V., “Ignition Handbook,” Fire Science Publishers & Society of Fire Protection Engineers, 2003. Babrauskas, V., “Ignition Handbook,” Fire Science Publishers & Society of Fire Protection Engineers, 2003.
2.
Zurück zum Zitat Engineering Guide: Piloted Ignition of Solid Materials Under radiant Exposure, Society of Fire Protection Engineers, Bethesda, Maryland, USA, 2002. Engineering Guide: Piloted Ignition of Solid Materials Under radiant Exposure, Society of Fire Protection Engineers, Bethesda, Maryland, USA, 2002.
3.
Zurück zum Zitat Hirata, T., Kashiwagi, T. and Brown, J.E., “Thermal and oxidative degradation of Poly (methyl methacrylate): Wight loss,” Macromolecules, 18, 1410–1418, 1985.CrossRef Hirata, T., Kashiwagi, T. and Brown, J.E., “Thermal and oxidative degradation of Poly (methyl methacrylate): Wight loss,” Macromolecules, 18, 1410–1418, 1985.CrossRef
4.
Zurück zum Zitat Di Blasi, C., “Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels,” Progress in Energy and Combustion Science, 19, 71–104, 1993.CrossRef Di Blasi, C., “Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels,” Progress in Energy and Combustion Science, 19, 71–104, 1993.CrossRef
5.
Zurück zum Zitat Ohlemiller, T.J., “Modeling of Smoldering Combustion Propagation,” Progress in Energy and Combustion Science, 11, 277–310, 1986.CrossRef Ohlemiller, T.J., “Modeling of Smoldering Combustion Propagation,” Progress in Energy and Combustion Science, 11, 277–310, 1986.CrossRef
6.
Zurück zum Zitat Rein, G., Lautenberger, C., Fernandez-Pello, A.C., Torero, J.L. & Urban, D.L., “Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion,” Combustion and Flame 146 95–108 (2006).CrossRef Rein, G., Lautenberger, C., Fernandez-Pello, A.C., Torero, J.L. & Urban, D.L., “Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion,” Combustion and Flame 146 95108 (2006).CrossRef
7.
Zurück zum Zitat Lautenberger, C., Rein, G. & Fernandez-Pello, A.C., “The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling from Bench-Scale Fire Test Data,” Fire Safety Journal 41 204–214 (2006).CrossRef Lautenberger, C., Rein, G. & Fernandez-Pello, A.C., “The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling from Bench-Scale Fire Test Data,” Fire Safety Journal 41 204214 (2006).CrossRef
8.
Zurück zum Zitat Bal, N., “Uncertainty and complexity in pyrolysis modelling,” PhD Dissertation, University of Edinburgh, 2012. Bal, N., “Uncertainty and complexity in pyrolysis modelling,” PhD Dissertation, University of Edinburgh, 2012.
9.
Zurück zum Zitat Bal, N. and Rein, G., “Uncertainty and Calibration in Polymer Pyrolysis Modelling,” Recent Advances in Flame Retardancy of Polymeric materials, vol. 23, C. Wilke (Editor), BCC, May 2012. Bal, N. and Rein, G., “Uncertainty and Calibration in Polymer Pyrolysis Modelling,” Recent Advances in Flame Retardancy of Polymeric materials, vol. 23, C. Wilke (Editor), BCC, May 2012.
10.
Zurück zum Zitat Chao, Y.H. and Wang, J.H., “Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam,” Journal of Fire Science, 19, pp. 137–155, 2001. Chao, Y.H. and Wang, J.H., “Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam,” Journal of Fire Science, 19, pp. 137–155, 2001.
11.
Zurück zum Zitat Lautenberger C. and Fernandez-Pello, A.C., “Optimization algorithms for material pyrolysis property estimation,” Fire Safety Science, 10, 751–764, 2011.CrossRef Lautenberger C. and Fernandez-Pello, A.C., “Optimization algorithms for material pyrolysis property estimation,” Fire Safety Science, 10, 751–764, 2011.CrossRef
12.
Zurück zum Zitat Chaos, M. Khan, M.M., Krishnamoorthy, N., De Ris, J.L. and Dorofeev, S.B. “Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests,” Proceedings of the Combustion Institute, 33, 2599–2606, 2011.CrossRef Chaos, M. Khan, M.M., Krishnamoorthy, N., De Ris, J.L. and Dorofeev, S.B. “Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests,” Proceedings of the Combustion Institute, 33, 2599–2606, 2011.CrossRef
13.
Zurück zum Zitat Bruns, M.C., Koo, J.H. and Ezekoye, O.A., “Population-based models of thermoplastic degradation: Using optimization to determine model parameters,” Polymer degradation and stability, 94, 1013–1022, 2009.CrossRef Bruns, M.C., Koo, J.H. and Ezekoye, O.A., “Population-based models of thermoplastic degradation: Using optimization to determine model parameters,” Polymer degradation and stability, 94, 1013–1022, 2009.CrossRef
14.
Zurück zum Zitat Lyon, R.E., Safronava, N. and Oztekin, E., “A simple method for determining kinetic parameters for materials in fire models,” Fire Safety Science, 10, 765–777, 2011.CrossRef Lyon, R.E., Safronava, N. and Oztekin, E., “A simple method for determining kinetic parameters for materials in fire models,” Fire Safety Science, 10, 765–777, 2011.CrossRef
15.
Zurück zum Zitat Kashiwagi, T. and Nambu, H., “Global Kinetics constants for thermal oxidative degradation of a cellulosic paper,” Combustion and Flame, 88, 345–368, 1992.CrossRef Kashiwagi, T. and Nambu, H., “Global Kinetics constants for thermal oxidative degradation of a cellulosic paper,” Combustion and Flame, 88, 345–368, 1992.CrossRef
16.
Zurück zum Zitat Cullis, C.F. and Hirschler, M.M., “The Combustion of Organic Polymers,” International Series of Monographs in Chemistry, Oxford Science Publications, Oxford, United Kingdom, 1981. Cullis, C.F. and Hirschler, M.M., “The Combustion of Organic Polymers,” International Series of Monographs in Chemistry, Oxford Science Publications, Oxford, United Kingdom, 1981.
17.
Zurück zum Zitat Drysdale, D., An Introduction to Fire Dynamics. Second Edition. John Wiley and Sons, New York, 1999. Drysdale, D., An Introduction to Fire Dynamics. Second Edition. John Wiley and Sons, New York, 1999.
18.
Zurück zum Zitat Williams, F.A., Combustion Theory, 2nd Edition, Addison-Wesley Publishing Company, Inc., 1985. Williams, F.A., Combustion Theory, 2nd Edition, Addison-Wesley Publishing Company, Inc., 1985.
19.
Zurück zum Zitat Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S., Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley and Sons, 2006. Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S., Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley and Sons, 2006.
20.
Zurück zum Zitat Oztekin, E.S., Crowley, S.B., Lyon, R.E., Stoliarov, S.I., Patel, P. and Hull, T.R., Sources of variability in fire test data: a case study on poly(aryl ether ether ketone) (PEEK), Combustion and Flame, 159, 1720–1731, 2012.CrossRef Oztekin, E.S., Crowley, S.B., Lyon, R.E., Stoliarov, S.I., Patel, P. and Hull, T.R., Sources of variability in fire test data: a case study on poly(aryl ether ether ketone) (PEEK), Combustion and Flame, 159, 1720–1731, 2012.CrossRef
21.
Zurück zum Zitat Stoliarov, S.I., Safronava, N. and Lyon, R.E., “The effect of variation in polymer properties on the rate of burning,” Fire and Materials, 33, 257–271, 2009.CrossRef Stoliarov, S.I., Safronava, N. and Lyon, R.E., “The effect of variation in polymer properties on the rate of burning,” Fire and Materials, 33, 257–271, 2009.CrossRef
22.
Zurück zum Zitat Nield, D.A. and Bejan, A., “Convection in Porous Media,” Springer-Verlag, 1992. Nield, D.A. and Bejan, A., “Convection in Porous Media,” Springer-Verlag, 1992.
23.
Zurück zum Zitat ASTM E-1354-03, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, American Society for Testing and Materials, Philadelphia, 2003. ASTM E-1354-03, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, American Society for Testing and Materials, Philadelphia, 2003.
24.
Zurück zum Zitat ASTM 1321-97a, Standard Test Method for Determining Material Ignition and Flame Spread Properties, American Society for Testing and Materials, Philadelphia, 1997. ASTM 1321-97a, Standard Test Method for Determining Material Ignition and Flame Spread Properties, American Society for Testing and Materials, Philadelphia, 1997.
25.
Zurück zum Zitat ASTM E-2058-03, “Standard Method of Test for Measurement of Synthetic Polymer Material Flammability Using the Fire propagation Apparatus (FPA),” American Society for Testing and Materials, Philadelphia, 2003. ASTM E-2058-03, “Standard Method of Test for Measurement of Synthetic Polymer Material Flammability Using the Fire propagation Apparatus (FPA),” American Society for Testing and Materials, Philadelphia, 2003.
26.
Zurück zum Zitat Staggs, J.E.J., “Convection heat transfer in the cone calorimeter,” Fire Safety Journal, 44, 469–474, 2009.CrossRef Staggs, J.E.J., “Convection heat transfer in the cone calorimeter,” Fire Safety Journal, 44, 469–474, 2009.CrossRef
27.
Zurück zum Zitat Staggs, J.E.J., “A reappraisal of convection heat transfer in the cone calorimeter,” Fire Safety Journal, 46, 125–131, 2011.CrossRef Staggs, J.E.J., “A reappraisal of convection heat transfer in the cone calorimeter,” Fire Safety Journal, 46, 125–131, 2011.CrossRef
28.
Zurück zum Zitat Zhang, J. and Delichatsios, M.A., “Determination of the convective heat transfer coefficient in three-dimensional inverse heat conduction problems,” Fire Safety Journal, 44, 681–690, 2009.CrossRef Zhang, J. and Delichatsios, M.A., “Determination of the convective heat transfer coefficient in three-dimensional inverse heat conduction problems,” Fire Safety Journal, 44, 681–690, 2009.CrossRef
29.
Zurück zum Zitat Torero, J.L. “Scaling-Up Fire,” Proceedings of the Combustion Institute, 34 (1), 99–124, 2013.CrossRef Torero, J.L. “Scaling-Up Fire,” Proceedings of the Combustion Institute, 34 (1), 99–124, 2013.CrossRef
30.
Zurück zum Zitat Fernandez-Pello, A.C., “The Solid Phase,” In Combustion Fundamentals of Fire, Ed. G. Cox, Academic Press, New York, pp. 31–100, 1995. Fernandez-Pello, A.C., “The Solid Phase,” In Combustion Fundamentals of Fire, Ed. G. Cox, Academic Press, New York, pp. 31–100, 1995.
31.
Zurück zum Zitat Fernandez-Pello, A.C. “On fire ignition,” Fire Safety Science, 10, 25–42, 2011.CrossRef Fernandez-Pello, A.C. “On fire ignition,” Fire Safety Science, 10, 25–42, 2011.CrossRef
32.
Zurück zum Zitat Niioka, T., Takahashi, M., Izumikawa, M., 1981, “Gas-phase ignition of a solid fuel in a hot stagnation point flow”, 18th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 741–747. Niioka, T., Takahashi, M., Izumikawa, M., 1981, “Gas-phase ignition of a solid fuel in a hot stagnation point flow”, 18th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 741–747.
33.
Zurück zum Zitat Delichatsios M A and Delichatsios M M, “Critical Mass Pyrolysis rates for Extinction of Fires over solid Materials” Fifth Symposium on Fire Safety Science, 153–164, 1996. Delichatsios M A and Delichatsios M M, “Critical Mass Pyrolysis rates for Extinction of Fires over solid Materials” Fifth Symposium on Fire Safety Science, 153–164, 1996.
34.
Zurück zum Zitat Torero, J.L., Vietoris, T., Legros, G., Joulain, P. “Estimation of a Total Mass Transfer Number from Stand-off Distance of a Spreading Flame,” Combustion Science and Technology, 174 (11–12), pp. 187-203, 2002. Torero, J.L., Vietoris, T., Legros, G., Joulain, P. “Estimation of a Total Mass Transfer Number from Stand-off Distance of a Spreading Flame,” Combustion Science and Technology, 174 (11–12), pp. 187-203, 2002.
35.
Zurück zum Zitat Quintiere, J.G., “Fundamentals of Fire Phenomena,” John Wiley and Sons, 2006. Quintiere, J.G., “Fundamentals of Fire Phenomena,” John Wiley and Sons, 2006.
36.
Zurück zum Zitat Gray, P. and Lee, P. R. “Thermal Explosion Theory,” Oxidation and Combustion Reviews, 2, 3–180, 1967. Gray, P. and Lee, P. R. “Thermal Explosion Theory,” Oxidation and Combustion Reviews, 2, 3–180, 1967.
37.
Zurück zum Zitat Atreya, A., “Ignition of Fires,” Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences 356 2787–2813 (1998).CrossRef Atreya, A., “Ignition of Fires,” Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences 356 2787–2813 (1998).CrossRef
38.
Zurück zum Zitat Horrocks, A.R., Gawande, S., Kandola, B. and Dunn, K. W., “Recent Advances in Flame Retardancy of Polymeric Materials,” Business Communications Co., Norwalk, Connecticut, USA, 2000. Horrocks, A.R., Gawande, S., Kandola, B. and Dunn, K. W., “Recent Advances in Flame Retardancy of Polymeric Materials,” Business Communications Co., Norwalk, Connecticut, USA, 2000.
39.
Zurück zum Zitat Backer, S., Tesoro, G.C., Toong, T.Y. and Moussa, N.A., “Textile Fabric Flammability,” The MIT Press, Cambridge, Massachusetts, USA, 1976. Backer, S., Tesoro, G.C., Toong, T.Y. and Moussa, N.A., “Textile Fabric Flammability,” The MIT Press, Cambridge, Massachusetts, USA, 1976.
40.
Zurück zum Zitat Williams, F.A., “A Review of Flame Extinction,” Fire Safety Journal, 3, 163–175, 1981.CrossRef Williams, F.A., “A Review of Flame Extinction,” Fire Safety Journal, 3, 163–175, 1981.CrossRef
41.
Zurück zum Zitat Rasbash D J, Drysdale D D, and Deepak D, “Critical Heat and Mass Transfer at Pilot Ignition and Extinction of a Material,” Fire Safety Journal, 10, 1–10, 1986.CrossRef Rasbash D J, Drysdale D D, and Deepak D, “Critical Heat and Mass Transfer at Pilot Ignition and Extinction of a Material,” Fire Safety Journal, 10, 1–10, 1986.CrossRef
42.
Zurück zum Zitat Fereres, S., Lautenberger, C., Fernandez-Pello, A.C., Urban, D. and Ruff, G., “Mass flux at ignition in reduced pressure environments,” Combustion and Flame, 158, 1301–1306, 2011.CrossRef Fereres, S., Lautenberger, C., Fernandez-Pello, A.C., Urban, D. and Ruff, G., “Mass flux at ignition in reduced pressure environments,” Combustion and Flame, 158, 1301–1306, 2011.CrossRef
43.
Zurück zum Zitat Thomson H E, Drysdale D D, and Beyler C L, “An Experimental Evaluation of Critical Surface Temperature as a Criterion for Piloted Ignition of Solid Fuels,” Fire Safety Journal, 13 185–196, 1988.CrossRef Thomson H E, Drysdale D D, and Beyler C L, “An Experimental Evaluation of Critical Surface Temperature as a Criterion for Piloted Ignition of Solid Fuels,” Fire Safety Journal, 13 185–196, 1988.CrossRef
44.
Zurück zum Zitat Beyler, C., “A Unified Model of Fire Suppression,” Journal of Fire Protection Engineering, 4 (1), 5–16, 1992.CrossRef Beyler, C., “A Unified Model of Fire Suppression,” Journal of Fire Protection Engineering, 4 (1), 5–16, 1992.CrossRef
45.
Zurück zum Zitat Quintiere, J.G. and Rangwala, A.S., “A theory for flame extinction based on flame temperature,” Fire and Materials, Volume 28, Issue 5, September/October, Pages: 387–402, 2004. Quintiere, J.G. and Rangwala, A.S., “A theory for flame extinction based on flame temperature,” Fire and Materials, Volume 28, Issue 5, September/October, Pages: 387–402, 2004.
46.
Zurück zum Zitat Cordova, J.L., Walther, D.C., Torero, J.L. and Fernandez-Pello, A.C. “Oxidizer Flow Effects on the Flammability of Solid Combustibles,” Combustion Science and Technology, 164, No. 1–6, pp. 253–278, 2001. Cordova, J.L., Walther, D.C., Torero, J.L. and Fernandez-Pello, A.C. “Oxidizer Flow Effects on the Flammability of Solid Combustibles,” Combustion Science and Technology, 164, No. 1–6, pp. 253–278, 2001.
47.
Zurück zum Zitat McAllister, S., Fernandez-Pello, A.C., Urban, D. and Ruff, G., “The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible,” Combustion and Flame, 157, 1753–1759, 2010.CrossRef McAllister, S., Fernandez-Pello, A.C., Urban, D. and Ruff, G., “The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible,” Combustion and Flame, 157, 1753–1759, 2010.CrossRef
48.
Zurück zum Zitat Roberts, A.F. and Quince, B.W., “A Limiting Condition for Burning of Flammable Liquids,” Combustion and Flame, 20, 245–251, 1973.CrossRef Roberts, A.F. and Quince, B.W., “A Limiting Condition for Burning of Flammable Liquids,” Combustion and Flame, 20, 245–251, 1973.CrossRef
49.
Zurück zum Zitat Lautenberger, C. and Fernandez-Pello, A.C. “A generalized pyrolysis model for combustible solids,” 5th International Seminar on Fire and Explosion Hazards, April, 23–27, Edinburgh, UK. Lautenberger, C. and Fernandez-Pello, A.C. “A generalized pyrolysis model for combustible solids,” 5th International Seminar on Fire and Explosion Hazards, April, 23–27, Edinburgh, UK.
50.
Zurück zum Zitat Butler, K. M. Mixed Layer Model for Pyrolysis of Bubbling Thermoplastic Materials, National Institute of Standards and Technology, Gaithersburg, MD, NISTIR 6242; October 1998. Butler, K. M. Mixed Layer Model for Pyrolysis of Bubbling Thermoplastic Materials, National Institute of Standards and Technology, Gaithersburg, MD, NISTIR 6242; October 1998.
51.
Zurück zum Zitat Kashiwagi, T., “Polymer Combustion and Flammability-Role of the Condensed Phase,” Proceedings of the Combustion Institute, 25, 1423–1437, 1994.CrossRef Kashiwagi, T., “Polymer Combustion and Flammability-Role of the Condensed Phase,” Proceedings of the Combustion Institute, 25, 1423–1437, 1994.CrossRef
52.
Zurück zum Zitat Di Blasi C., “The state of the art of transport models for charring solid degradation,” Polymer International 49 1133–1146, 2000.CrossRef Di Blasi C., “The state of the art of transport models for charring solid degradation,” Polymer International 49 1133–1146, 2000.CrossRef
53.
Zurück zum Zitat Moghtaderi, B., “The State-of-the-Art in Pyrolysis Modeling of Lignocellulosic Solid Fuels,” Fire and Materials 30 1–34, 2006.CrossRef Moghtaderi, B., “The State-of-the-Art in Pyrolysis Modeling of Lignocellulosic Solid Fuels,” Fire and Materials 30 1–34, 2006.CrossRef
54.
Zurück zum Zitat Lautenberger, C. & Fernandez-Pello, A.C., “Pyrolysis Modeling, Thermal Decomposition, and Transport Processes in Combustible Solids,” to appear in Transport Phenomena in Fires, Ed. M. Faghri & B. Sunden, WIT Press, 2008. Lautenberger, C. & Fernandez-Pello, A.C., “Pyrolysis Modeling, Thermal Decomposition, and Transport Processes in Combustible Solids,” to appear in Transport Phenomena in Fires, Ed. M. Faghri & B. Sunden, WIT Press, 2008.
55.
Zurück zum Zitat Lautenberger, C., Kim, E., Dembsey, N. and Fernandez-Pello, A.C., “The role of decomposition kinetics in pyrolysis modelling – Application to a fire retardant polyester composite,” Fire Safety Science, 9, 1201–1212, 2009. Lautenberger, C., Kim, E., Dembsey, N. and Fernandez-Pello, A.C., “The role of decomposition kinetics in pyrolysis modelling – Application to a fire retardant polyester composite,” Fire Safety Science, 9, 1201–1212, 2009.
56.
Zurück zum Zitat Stoliarov, S.I., Crowley, S., Walters, R.N. and Lyon, R.E., “Prediction of the burning rates of charring polymers,” Combustion and Flame, 157, 2024–2034, 2010.CrossRef Stoliarov, S.I., Crowley, S., Walters, R.N. and Lyon, R.E., “Prediction of the burning rates of charring polymers,” Combustion and Flame, 157, 2024–2034, 2010.CrossRef
57.
Zurück zum Zitat Stoliarov, S.I., Crowley, S., Lyon, R.E. and Linteris, G.T., “Prediction of the burning rates of non-charring polymers,” Combustion and Flame, 156, 1068–1083, 2009.CrossRef Stoliarov, S.I., Crowley, S., Lyon, R.E. and Linteris, G.T., “Prediction of the burning rates of non-charring polymers,” Combustion and Flame, 156, 1068–1083, 2009.CrossRef
58.
Zurück zum Zitat Bal, N. and Rein, G., “Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes,” Combustion and Flame, 158, 1109–1116, 2011.CrossRef Bal, N. and Rein, G., “Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes,” Combustion and Flame, 158, 1109–1116, 2011.CrossRef
59.
Zurück zum Zitat Wasan, S.R., Rauwoens,P., Vierendeels, J. and Merci, B., “An enthalpy-based pyrolysis model for charring and non-charring materials in case of fire,” Combustion and Flame, 157, 715–734, 2010. Wasan, S.R., Rauwoens,P., Vierendeels, J. and Merci, B., “An enthalpy-based pyrolysis model for charring and non-charring materials in case of fire,” Combustion and Flame, 157, 715–734, 2010.
60.
Zurück zum Zitat Dakka, S.M., Jackson, G. S. and Torero, J.L., “Mechanisms Controlling the Degradation of Poly(methyl methacrylate) Prior to Piloted Ignition” Proceedings of the Combustion Institute, 29, 281–287, 2002.CrossRef Dakka, S.M., Jackson, G. S. and Torero, J.L., “Mechanisms Controlling the Degradation of Poly(methyl methacrylate) Prior to Piloted Ignition” Proceedings of the Combustion Institute, 29, 281–287, 2002.CrossRef
61.
Zurück zum Zitat Beaulieu, P.A., and Dembsey, N.A., “Flammability Characteristics at Applied Heat Flux Levels up to 200 kW/m2”, Fire and Materials, 2007. Beaulieu, P.A., and Dembsey, N.A., “Flammability Characteristics at Applied Heat Flux Levels up to 200 kW/m2”, Fire and Materials, 2007.
62.
Zurück zum Zitat Hallman. J., “Ignition Characteristics of Plastics and Rubber,” Ph. D. Thesis, University of Oklahoma, Norman, OK, USA, 1971. Hallman. J., “Ignition Characteristics of Plastics and Rubber,” Ph. D. Thesis, University of Oklahoma, Norman, OK, USA, 1971.
63.
Zurück zum Zitat Jiang, F., deRis J.L. and Khan, M.M. “Absorption of thermal energy in PMMA by in-depth radiation,” Fire Safety Journal, 44, 106–112, 2009.CrossRef Jiang, F., deRis J.L. and Khan, M.M. “Absorption of thermal energy in PMMA by in-depth radiation,” Fire Safety Journal, 44, 106–112, 2009.CrossRef
64.
Zurück zum Zitat Girods, P., Bal, N., Biteau, H., Rein, G. and Torero, J.L., “Comparison of pyrolysis behaviour results between the Cone Calorimeter and the Fire Propagation Apparatus heat sources,” Fire Safety Science, 10, 889–901, 2011.CrossRef Girods, P., Bal, N., Biteau, H., Rein, G. and Torero, J.L., “Comparison of pyrolysis behaviour results between the Cone Calorimeter and the Fire Propagation Apparatus heat sources,” Fire Safety Science, 10, 889–901, 2011.CrossRef
65.
Zurück zum Zitat Bal, N., Raynard, J., Rein, G., Torero, J.L., Försth, M., Boulet, P., Parent, G., Acem, Z. and Linteris, G., “Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources,” International Journal of Heat and Mass Transfer, (in press), 2013. Bal, N., Raynard, J., Rein, G., Torero, J.L., Försth, M., Boulet, P., Parent, G., Acem, Z. and Linteris, G., “Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources,” International Journal of Heat and Mass Transfer, (in press), 2013.
66.
Zurück zum Zitat Steinhaus, T. 1999 “Evaluation of the Thermophysical Properties of Poly(Methyl Methacrylate): A Reference Material for the Development of a Flammability Test for Micro-Gravity Environments,” Masters Thesis, University of Maryland. Steinhaus, T. 1999 “Evaluation of the Thermophysical Properties of Poly(Methyl Methacrylate): A Reference Material for the Development of a Flammability Test for Micro-Gravity Environments,” Masters Thesis, University of Maryland.
67.
Zurück zum Zitat McGrattan, K., Klein, B., Hostikka, S., Floyd, J., “Fire Dynamics Simulator (Version 5), User’s Guide,” NIST Special Publication 1019–5, October 1, 2007. McGrattan, K., Klein, B., Hostikka, S., Floyd, J., “Fire Dynamics Simulator (Version 5), User’s Guide,” NIST Special Publication 1019–5, October 1, 2007.
68.
Zurück zum Zitat Mowrer, F.W., “An analysis of effective thermal properties of thermally thick materials,” Fire Safety Journal, Volume 40, Issue 5, Pages 395–410, July 2005. Mowrer, F.W., “An analysis of effective thermal properties of thermally thick materials,” Fire Safety Journal, Volume 40, Issue 5, Pages 395–410, July 2005.
69.
Zurück zum Zitat deRis, J. L. and Khan, M. M., “A Sample Holder for Determining Material Properties,” Fire and Materials, 24, 219–226, 2000. deRis, J. L. and Khan, M. M., “A Sample Holder for Determining Material Properties,” Fire and Materials, 24, 219–226, 2000.
70.
Zurück zum Zitat Quintiere, J.G., “A Simplified Theory for Generalizing Results from a Radiant Panel Rate of Flame Spread Apparatus,” Fire and Materials, Vol. 5, No. 2, 1981. Quintiere, J.G., “A Simplified Theory for Generalizing Results from a Radiant Panel Rate of Flame Spread Apparatus,” Fire and Materials, Vol. 5, No. 2, 1981.
71.
Zurück zum Zitat Wickman, I. S., “Theory of Opposed flame Spread,” Progress in Energy and Combustion Science, 18, 6, pp. 553–593, 1993.CrossRef Wickman, I. S., “Theory of Opposed flame Spread,” Progress in Energy and Combustion Science, 18, 6, pp. 553–593, 1993.CrossRef
72.
Zurück zum Zitat Quintiere, J.G., “Principles of Fire Behavior,” Delmar Publishers, 1997. Quintiere, J.G., “Principles of Fire Behavior,” Delmar Publishers, 1997.
73.
Zurück zum Zitat Lautenberger, C. Torero, J.L. and Fernandez-Pello, A.C., “Understanding Materials Flammability,” Chapter 1, Flammability Testing of Materials in Building, Construction, Transport and Mining Sectors, V. B. Apte Editor, pp. 1-21, CRC Press, 2006. Lautenberger, C. Torero, J.L. and Fernandez-Pello, A.C., “Understanding Materials Flammability,” Chapter 1, Flammability Testing of Materials in Building, Construction, Transport and Mining Sectors, V. B. Apte Editor, pp. 1-21, CRC Press, 2006.
Metadaten
Titel
Flaming Ignition of Solid Fuels
verfasst von
José Torero
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_21