Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Flash Sintering

verfasst von : Eugene A. Olevsky, Dina V. Dudina

Erschienen in: Field-Assisted Sintering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, the principle of flash sintering is presented, and the underlying mechanisms of the phenomenon are discussed. Flash sintering has attracted significant attention as a sintering method offering energy saving and shortening of processing times of ceramics to full density. In its “traditional” format, flash sintering occurs when an electrical potential is applied to the pre-compacted specimen heated in a furnace. The characteristic field strength and power dissipation values in flash sintering are 100–100 V·cm−1 and 10–1000 W·cm−3, respectively. From the viewpoint of sintering science, flash sintering is a remarkable phenomenon. It is currently agreed that “traditional” flash sintering is accompanied by a sudden increase in the conductivity of the sintered material, while the temperature instability plays a crucial role in the development of flash sintering. In the present chapter, initiation of flash sintering events by arc plasma and microwave radiation is also described. Possibilities of conducting flash sintering using sintering molds (including “flash spark plasma sintering”) are discussed. Microstructural evidence of grain-boundary melting in flash-sintered ceramics is provided. Possibilities to flash sinter all types of materials regardless of the way their electrical conductivity changes with temperature by forcing thermal runaway by applying a certain electric current pattern are presented. Application of flash sintering as a microstructure design method is exemplified by describing the origin and features of compositional and structural inhomogeneities arising in the flash-sintered materials due to melting of the material located at the grain boundaries. Examples of flash sintering of composite materials and accelerated phase homogenization during flash sintering of powder mixtures are provided. Successful applications of flash sintering for the production of functional materials and multilayered structures are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu M, Grasso S, Mckinnon R, Saunders T, Reece MJ (2017) Review of flash sintering: materials, mechanisms and modeling. Adv Appl Ceram 116:24–60CrossRef Yu M, Grasso S, Mckinnon R, Saunders T, Reece MJ (2017) Review of flash sintering: materials, mechanisms and modeling. Adv Appl Ceram 116:24–60CrossRef
2.
Zurück zum Zitat Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 degrees C. J Am Ceram Soc 93:3556–3559CrossRef Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 degrees C. J Am Ceram Soc 93:3556–3559CrossRef
3.
Zurück zum Zitat Francis JSC, Cologna M, Raj R (2012) Particle size effects in flash sintering. J Eur Ceram Soc 32:3129–3136CrossRef Francis JSC, Cologna M, Raj R (2012) Particle size effects in flash sintering. J Eur Ceram Soc 32:3129–3136CrossRef
4.
Zurück zum Zitat Raj R (2012) Joule heating during flash-sintering. J Eur Ceram Soc 32:2293–2301CrossRef Raj R (2012) Joule heating during flash-sintering. J Eur Ceram Soc 32:2293–2301CrossRef
5.
Zurück zum Zitat Saini KK, Sharma CP, Chanderkant SDK, Ravat KB, Chandra S, Tewari SP (1993) Effect of thallium concentration on Tl-2201 superconducting phase by flash sintering process. Physica C 216:59–65CrossRef Saini KK, Sharma CP, Chanderkant SDK, Ravat KB, Chandra S, Tewari SP (1993) Effect of thallium concentration on Tl-2201 superconducting phase by flash sintering process. Physica C 216:59–65CrossRef
6.
Zurück zum Zitat Muccillo R, Muccillo ENS (2013) An experimental setup for shrinkage evaluation during electric field-assisted flash sintering: application to yttria-stabilized zirconia. J Eur Ceram Soc 33:515–520CrossRef Muccillo R, Muccillo ENS (2013) An experimental setup for shrinkage evaluation during electric field-assisted flash sintering: application to yttria-stabilized zirconia. J Eur Ceram Soc 33:515–520CrossRef
7.
Zurück zum Zitat Hao X, Liu Y, Wang Z, Qiao J, Sun K (2012) A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current. J Power Sources 210:86–91CrossRef Hao X, Liu Y, Wang Z, Qiao J, Sun K (2012) A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current. J Power Sources 210:86–91CrossRef
8.
Zurück zum Zitat Muccillo R, Kleitz M, Muccillo ENS (2012) Flash grain welding in yttria stabilized zirconia. J Eur Ceram Soc 31:1517–1521CrossRef Muccillo R, Kleitz M, Muccillo ENS (2012) Flash grain welding in yttria stabilized zirconia. J Eur Ceram Soc 31:1517–1521CrossRef
9.
Zurück zum Zitat Cologna M, Prette ALG, Raj R (2011) Flash-sintering of cubic yttria-stabilized zirconia at 750 degrees C for possible use in SOFC manufacturing. J Am Ceram Soc 94:316–319CrossRef Cologna M, Prette ALG, Raj R (2011) Flash-sintering of cubic yttria-stabilized zirconia at 750 degrees C for possible use in SOFC manufacturing. J Am Ceram Soc 94:316–319CrossRef
10.
Zurück zum Zitat Prette ALG, Cologna M, Sglavo V, Raj R (2011) Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J Power Sources 196:2061–2065CrossRef Prette ALG, Cologna M, Sglavo V, Raj R (2011) Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J Power Sources 196:2061–2065CrossRef
11.
Zurück zum Zitat Cologna M, Francis JSC, Raj R (2011) Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc 31:2827–2837CrossRef Cologna M, Francis JSC, Raj R (2011) Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc 31:2827–2837CrossRef
12.
Zurück zum Zitat Zapata-Solvas E, Bonilla S, Wilshaw PR, Todd RI (2013) Preliminary investigation of flash sintering of SiC. J Eur Ceram Soc 33:2811–2816CrossRef Zapata-Solvas E, Bonilla S, Wilshaw PR, Todd RI (2013) Preliminary investigation of flash sintering of SiC. J Eur Ceram Soc 33:2811–2816CrossRef
13.
Zurück zum Zitat Saunders T, Grasso S, Reece MJ (2016) Ultrafast-contactless flash sintering using plasma electrodes. Sci Rep 6:27222CrossRef Saunders T, Grasso S, Reece MJ (2016) Ultrafast-contactless flash sintering using plasma electrodes. Sci Rep 6:27222CrossRef
14.
Zurück zum Zitat Grasso S, Saunders T, Porwal H, Cedillos-Barraza O, Jayaseelan DD, Lee WE, Reece MJ (2014) Flash spark plasma sintering (FSPS) of pure ZrB2. J Am Ceram Soc 97(8):2405–2408CrossRef Grasso S, Saunders T, Porwal H, Cedillos-Barraza O, Jayaseelan DD, Lee WE, Reece MJ (2014) Flash spark plasma sintering (FSPS) of pure ZrB2. J Am Ceram Soc 97(8):2405–2408CrossRef
15.
Zurück zum Zitat Olevsky EA, Rolfing SM, Maximenko AL (2016) Flash (ultra-rapid) spark-plasma sintering of silicon carbide. Sci Rep 6:33408CrossRef Olevsky EA, Rolfing SM, Maximenko AL (2016) Flash (ultra-rapid) spark-plasma sintering of silicon carbide. Sci Rep 6:33408CrossRef
16.
Zurück zum Zitat Grasso S, Saunders T, Porwal H, Milsom B, Tudball A, Reece M (2016) Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc 99(5):1534–1543CrossRef Grasso S, Saunders T, Porwal H, Milsom B, Tudball A, Reece M (2016) Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc 99(5):1534–1543CrossRef
17.
Zurück zum Zitat Grasso S, Kim EY, Saunders T, Yu M, Tudball A, Choi SH, Reece M (2016) Ultra-rapid crystal growth of textured SiC using flash spark plasma sintering route. Cryst Growth Des 16:2317–2321CrossRef Grasso S, Kim EY, Saunders T, Yu M, Tudball A, Choi SH, Reece M (2016) Ultra-rapid crystal growth of textured SiC using flash spark plasma sintering route. Cryst Growth Des 16:2317–2321CrossRef
18.
Zurück zum Zitat McWilliams B, Yu J, Kellogg F, Kilczewski S (2017) Enhanced sintering kinetics in aluminum alloy powder consolidated using DC electric fields. Metall Mater Trans A 48:919–929CrossRef McWilliams B, Yu J, Kellogg F, Kilczewski S (2017) Enhanced sintering kinetics in aluminum alloy powder consolidated using DC electric fields. Metall Mater Trans A 48:919–929CrossRef
19.
Zurück zum Zitat Zhang Y, Luo J (2015) Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120 deg C. Scr Mater 106:26–29CrossRef Zhang Y, Luo J (2015) Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120 deg C. Scr Mater 106:26–29CrossRef
20.
Zurück zum Zitat Hewitt IJ, Lacey AA, Todd RI (2015) A mathematical model for flash sintering. Math Model Nat Phenom 10(6):77–89CrossRef Hewitt IJ, Lacey AA, Todd RI (2015) A mathematical model for flash sintering. Math Model Nat Phenom 10(6):77–89CrossRef
21.
Zurück zum Zitat Dong Y, Chen IW (2016) Thermal runaway in mold-assisted flash sintering. J Am Ceram Soc 99(9):2889–2894CrossRef Dong Y, Chen IW (2016) Thermal runaway in mold-assisted flash sintering. J Am Ceram Soc 99(9):2889–2894CrossRef
22.
Zurück zum Zitat Dong Y, Chen IW (2015) Predicting the onset of flash sintering. J Am Ceram Soc 98(8):2333–2335CrossRef Dong Y, Chen IW (2015) Predicting the onset of flash sintering. J Am Ceram Soc 98(8):2333–2335CrossRef
23.
Zurück zum Zitat Dong Y, Chen IW (2015) Onset criterion for flash sintering. J Am Ceram Soc 98(12):3624–3627CrossRef Dong Y, Chen IW (2015) Onset criterion for flash sintering. J Am Ceram Soc 98(12):3624–3627CrossRef
24.
Zurück zum Zitat Downs JA, Sglavo VM (2013) Electric field assisted sintering of cubic zirconia at 390°C. J Am Ceram Soc 96(5):1342–1344CrossRef Downs JA, Sglavo VM (2013) Electric field assisted sintering of cubic zirconia at 390°C. J Am Ceram Soc 96(5):1342–1344CrossRef
25.
Zurück zum Zitat Francis JSC, Raj R (2012) Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J Am Ceram Soc 95:138–146CrossRef Francis JSC, Raj R (2012) Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J Am Ceram Soc 95:138–146CrossRef
26.
Zurück zum Zitat Raj R, Cologna M, Francis JSC (2011) Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Am Ceram Soc 94:1941–1965CrossRef Raj R, Cologna M, Francis JSC (2011) Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Am Ceram Soc 94:1941–1965CrossRef
27.
Zurück zum Zitat Karakuscu A, Cologna M, Yarotski D, Won J, Francis JSC, Raj R, Uberuaga BP (2012) Defect structure of flash-sintered strontium titanate. J Am Ceram Soc 95:2531–2536CrossRef Karakuscu A, Cologna M, Yarotski D, Won J, Francis JSC, Raj R, Uberuaga BP (2012) Defect structure of flash-sintered strontium titanate. J Am Ceram Soc 95:2531–2536CrossRef
28.
Zurück zum Zitat Grasso S, Sakka Y, Rendtorff N, Hu CF, Maizza G, Borodianska H, Vasylkiv O (2011) Modeling of the temperature distribution of flash sintered zirconia. J Ceram Soc Jap 119:144–146CrossRef Grasso S, Sakka Y, Rendtorff N, Hu CF, Maizza G, Borodianska H, Vasylkiv O (2011) Modeling of the temperature distribution of flash sintered zirconia. J Ceram Soc Jap 119:144–146CrossRef
29.
Zurück zum Zitat Park J, Chen IW (2013) In situ thermometry measuring temperature flashes exceeding 1,700°C in 8 Mol% Y2O3-stablized zirconia under constant-voltage heating. J Am Ceram Soc 96:697–700CrossRef Park J, Chen IW (2013) In situ thermometry measuring temperature flashes exceeding 1,700°C in 8 Mol% Y2O3-stablized zirconia under constant-voltage heating. J Am Ceram Soc 96:697–700CrossRef
30.
Zurück zum Zitat Todd RI, Zapata-Solvas E, Bonilla RS, Sneddon T, Wilshaw PR (2015) Electrical characteristics of flash sintering: thermal runaway of joule heating. J Eur Ceram Soc 35:1865–1877CrossRef Todd RI, Zapata-Solvas E, Bonilla RS, Sneddon T, Wilshaw PR (2015) Electrical characteristics of flash sintering: thermal runaway of joule heating. J Eur Ceram Soc 35:1865–1877CrossRef
31.
Zurück zum Zitat Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69:107–111CrossRef Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69:107–111CrossRef
32.
Zurück zum Zitat Bykov YV, Egorov SV, Eremeev AG, Kholoptsev VV, Plotnikov IV, Rybakov KI, Sorokin AA (2016) On the mechanism of microwave flash sintering of ceramics. Materials 9:684CrossRef Bykov YV, Egorov SV, Eremeev AG, Kholoptsev VV, Plotnikov IV, Rybakov KI, Sorokin AA (2016) On the mechanism of microwave flash sintering of ceramics. Materials 9:684CrossRef
33.
Zurück zum Zitat Bykov YV, Egorov SV, Eremeev AG, Kholoptsev VV, Rybakov KI, Sorokin AA (2015) Flash microwave sintering of transparent Yb:(LaY)2O3 ceramics. J Am Ceram Soc 98(11):3518–3524CrossRef Bykov YV, Egorov SV, Eremeev AG, Kholoptsev VV, Rybakov KI, Sorokin AA (2015) Flash microwave sintering of transparent Yb:(LaY)2O3 ceramics. J Am Ceram Soc 98(11):3518–3524CrossRef
34.
Zurück zum Zitat Chaim R (2016) Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9:280CrossRef Chaim R (2016) Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9:280CrossRef
35.
Zurück zum Zitat Chaim R (2017) Particle surface softening as universal behavior during flash sintering of oxide nano-powders. Materials 10:179CrossRef Chaim R (2017) Particle surface softening as universal behavior during flash sintering of oxide nano-powders. Materials 10:179CrossRef
36.
Zurück zum Zitat Candelario VM, Moreno R, Todd RI, Ortiz AL (2017) Liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing. J Eur Ceram Soc 37:485–498CrossRef Candelario VM, Moreno R, Todd RI, Ortiz AL (2017) Liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing. J Eur Ceram Soc 37:485–498CrossRef
37.
Zurück zum Zitat Lebrun JM, Morrissey TG, Francis JSC, Seymour KC, Kriven WM, Raj R (2015) Emergence and extinction of a new phase during on–off experiments related to flash sintering of 3YSZ. J Am Ceram Soc 98:1493–1497CrossRef Lebrun JM, Morrissey TG, Francis JSC, Seymour KC, Kriven WM, Raj R (2015) Emergence and extinction of a new phase during on–off experiments related to flash sintering of 3YSZ. J Am Ceram Soc 98:1493–1497CrossRef
38.
Zurück zum Zitat Jha SK, Lebrun JM, Seymour KC, Kriven WM, Raj R (2016) Electric field induced texture in titania during experiments related to flash sintering. J Eur Ceram Soc 36(1):257–261CrossRef Jha SK, Lebrun JM, Seymour KC, Kriven WM, Raj R (2016) Electric field induced texture in titania during experiments related to flash sintering. J Eur Ceram Soc 36(1):257–261CrossRef
39.
Zurück zum Zitat Perelaer J, Klokkenburg M, Hendriks CE, Schubert US (2009) Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv Mater 21:4830–4834CrossRef Perelaer J, Klokkenburg M, Hendriks CE, Schubert US (2009) Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv Mater 21:4830–4834CrossRef
40.
Zurück zum Zitat Perelaer J, Jani R, Grouchko M, Kamyshny A, Magdassi S, Schubert US (2012) Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv Mater 24:3993–3998CrossRef Perelaer J, Jani R, Grouchko M, Kamyshny A, Magdassi S, Schubert US (2012) Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv Mater 24:3993–3998CrossRef
41.
Zurück zum Zitat Manière C, Lee G, Zahrah T, Olevsky EA (2018) Microwave flash sintering of metal powders: from experimental evidence to multiphysics simulation. Acta Mater 147:24–34CrossRef Manière C, Lee G, Zahrah T, Olevsky EA (2018) Microwave flash sintering of metal powders: from experimental evidence to multiphysics simulation. Acta Mater 147:24–34CrossRef
42.
Zurück zum Zitat Du B, Gucci F, Porwal H, Grasso S, Mahajan A, Reece MJ (2017) Flash spark plasma sintering of magnesium silicide stannide with improved thermoelectric properties. J Mater Chem C 5:1514–1521CrossRef Du B, Gucci F, Porwal H, Grasso S, Mahajan A, Reece MJ (2017) Flash spark plasma sintering of magnesium silicide stannide with improved thermoelectric properties. J Mater Chem C 5:1514–1521CrossRef
43.
Zurück zum Zitat Corapcioglu G, Ali Gulgun M, Kisslinger K, Sturm S, Jha SK, Raj R (2016) Microstructure and microchemistry of flash sintered K0.5Na0.5NbO3. J Ceram Soc Japan 124(4):321–328CrossRef Corapcioglu G, Ali Gulgun M, Kisslinger K, Sturm S, Jha SK, Raj R (2016) Microstructure and microchemistry of flash sintered K0.5Na0.5NbO3. J Ceram Soc Japan 124(4):321–328CrossRef
44.
Zurück zum Zitat Biesuz M, Luchi P, Quaranta A, Sglavo VM (2016) Theoretical and phenomenological analogies between flash sintering and dielectric breakdown in a-alumina. J Appl Phys 120:145107CrossRef Biesuz M, Luchi P, Quaranta A, Sglavo VM (2016) Theoretical and phenomenological analogies between flash sintering and dielectric breakdown in a-alumina. J Appl Phys 120:145107CrossRef
45.
Zurück zum Zitat Manière C, Lee G, Olevsky EA (2017) All-materials-inclusive flash spark plasma sintering. Sci Rep 7:15071CrossRef Manière C, Lee G, Olevsky EA (2017) All-materials-inclusive flash spark plasma sintering. Sci Rep 7:15071CrossRef
46.
Zurück zum Zitat Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A, Todd RI (2015) Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci Rep 5:8513CrossRef Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A, Todd RI (2015) Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci Rep 5:8513CrossRef
47.
Zurück zum Zitat Gaur A, Sglavo VM (2014) Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C. J Mater Sci 49:6321–6332CrossRef Gaur A, Sglavo VM (2014) Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C. J Mater Sci 49:6321–6332CrossRef
48.
Zurück zum Zitat Francis JSC, Cologna M, Montinaro D, Raj R (2013) Flash sintering of anode–electrolyte multilayers for SOFC applications. J Am Ceram Soc 96(5):1352–1354CrossRef Francis JSC, Cologna M, Montinaro D, Raj R (2013) Flash sintering of anode–electrolyte multilayers for SOFC applications. J Am Ceram Soc 96(5):1352–1354CrossRef
49.
Zurück zum Zitat Jesus LM, Santos Silva R, Raj R, M’Peko JC (2016) Electric field-assisted flash sintering of CaCu3Ti4O12: microstructure characteristics and dielectric properties. J Alloys Comp 682:753–758CrossRef Jesus LM, Santos Silva R, Raj R, M’Peko JC (2016) Electric field-assisted flash sintering of CaCu3Ti4O12: microstructure characteristics and dielectric properties. J Alloys Comp 682:753–758CrossRef
50.
Zurück zum Zitat Liu D, Gao Y, Liu J, Wang Y, An L (2016) Effect of holding time on the microstructure and properties of flash sintered Y2O3-doped ZrO2. Ceram Int 42:17442–17446CrossRef Liu D, Gao Y, Liu J, Wang Y, An L (2016) Effect of holding time on the microstructure and properties of flash sintered Y2O3-doped ZrO2. Ceram Int 42:17442–17446CrossRef
Metadaten
Titel
Flash Sintering
verfasst von
Eugene A. Olevsky
Dina V. Dudina
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-76032-2_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.