Skip to main content
Erschienen in: Intelligent Industrial Systems 4/2016

01.12.2016 | Original Paper

Flatness-Based Adaptive Neurofuzzy Control of Chaotic Dynamical Systems

verfasst von: G. Rigatos, P. Siano

Erschienen in: Intelligent Industrial Systems | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper proposes a solution to the problem of control of nonlinear chaotic dynamical systems, which is based on differential flatness theory and on adaptive fuzzy control. An adaptive fuzzy controller is designed for chaotic dynamical systems, under the constraint that the system’s model is unknown. The control algorithm aims at satisfying the \(H_\infty \) tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the chaotic system’s model into a linear form, the resulting control inputs are shown to contain nonlinear elements which depend on the system’s parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed adaptive fuzzy control scheme results in \(H_{\infty }\) tracking performance. The efficiency of the adaptive fuzzy control method is checked through simulation experiments, using as case study the Lorenz chaotic oscillator.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chang, Y.C.: A robust tracking control for chaotic Chua’s circuits via fuzzy approach. IEEE Trans. Circuits Syst. Part I 48(7), 889–895 (2001)CrossRef Chang, Y.C.: A robust tracking control for chaotic Chua’s circuits via fuzzy approach. IEEE Trans. Circuits Syst. Part I 48(7), 889–895 (2001)CrossRef
2.
Zurück zum Zitat Kim, J.H., Hyun, C.H., Kim, E., Park, M.: Adaptive synchronization of chaotic systems based on T-S fuzzy model. IEEE Trans. Fuzzy Syst. 15(3), 359–369 (2007)CrossRef Kim, J.H., Hyun, C.H., Kim, E., Park, M.: Adaptive synchronization of chaotic systems based on T-S fuzzy model. IEEE Trans. Fuzzy Syst. 15(3), 359–369 (2007)CrossRef
3.
Zurück zum Zitat Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on T-S Fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)MathSciNetCrossRef Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on T-S Fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)MathSciNetCrossRef
4.
Zurück zum Zitat Sira-Ramirez, H., Luviano-Juarez, A., Cortes-Romero, J.: A disturbance rejection flatness-based linear output feedback control approach for tracking tasks of Chua’s circuit, 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, Florida (2011) Sira-Ramirez, H., Luviano-Juarez, A., Cortes-Romero, J.: A disturbance rejection flatness-based linear output feedback control approach for tracking tasks of Chua’s circuit, 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, Florida (2011)
5.
Zurück zum Zitat Fradkov, A.I., Andrievsky, B., Andrievsky, A.: Practically stable observer-based synchronization of discrete-time chaotic systems over the limited-band communication channel, 3rd International Conference on Physics and Control PhysCon 2007, Potsdam, Sept 2007 Fradkov, A.I., Andrievsky, B., Andrievsky, A.: Practically stable observer-based synchronization of discrete-time chaotic systems over the limited-band communication channel, 3rd International Conference on Physics and Control PhysCon 2007, Potsdam, Sept 2007
6.
Zurück zum Zitat Posznyak, A.S., Yu, W., Sanchez, E.N.: Identification and control of unknown chaotic systems via dynamic neural network. IEEE Trans. Circuits Syst. Part I 46(12), 1491–1495 (1999)CrossRef Posznyak, A.S., Yu, W., Sanchez, E.N.: Identification and control of unknown chaotic systems via dynamic neural network. IEEE Trans. Circuits Syst. Part I 46(12), 1491–1495 (1999)CrossRef
7.
Zurück zum Zitat Khanesar, M.A., Teshnehlab, M., Kaynak, O.: Observer-based indirect model reference fuzzy control system with application to control of chaotic systems. J. Frankl. Inst. 350, 419–436 (2013)MathSciNetCrossRefMATH Khanesar, M.A., Teshnehlab, M., Kaynak, O.: Observer-based indirect model reference fuzzy control system with application to control of chaotic systems. J. Frankl. Inst. 350, 419–436 (2013)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Chen, B., Liu, X., Tong, S.: Adaptive fuzzy approach to control unified chaotic systems. Chaos Solitons Fractals 34, 1180–1187 (2007)MathSciNetCrossRefMATH Chen, B., Liu, X., Tong, S.: Adaptive fuzzy approach to control unified chaotic systems. Chaos Solitons Fractals 34, 1180–1187 (2007)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Khanesar, M.A., Teshnehlab, M., Kaynak, O.: Control and synchronization of chaotic systems using a novel indirect model reference fuzzy controller. Soft Comput. 16(7), 1253–1265 (2012)CrossRefMATH Khanesar, M.A., Teshnehlab, M., Kaynak, O.: Control and synchronization of chaotic systems using a novel indirect model reference fuzzy controller. Soft Comput. 16(7), 1253–1265 (2012)CrossRefMATH
10.
Zurück zum Zitat Chen, D., Zhao, W., Sprott, J.C., Ma, X.: Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73, 1495–1505 (2013)MathSciNetCrossRefMATH Chen, D., Zhao, W., Sprott, J.C., Ma, X.: Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73, 1495–1505 (2013)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Loria, A.: Control of the 4th order hyper-chaotic system with one input. Commun. Nonlinear Sci. Numer. Simul. 15(6), 1621–1630 (2010)MathSciNetCrossRefMATH Loria, A.: Control of the 4th order hyper-chaotic system with one input. Commun. Nonlinear Sci. Numer. Simul. 15(6), 1621–1630 (2010)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Zhang, X., Khadra, A., Li, D., Yang, D.: Impulsive stability of chaotic systems represented by Takagi-Sugeno model. Chaos Solitons Fractals 41(4), 1863–1869 (2009)MathSciNetCrossRefMATH Zhang, X., Khadra, A., Li, D., Yang, D.: Impulsive stability of chaotic systems represented by Takagi-Sugeno model. Chaos Solitons Fractals 41(4), 1863–1869 (2009)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1998) Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1998)
14.
Zurück zum Zitat Crespo, L., Agrawal, S.: Differential flatness and cooperative tracking in the Lorenz System. In: Proceedings of the American Control Conference Denver, Colorado, USA, June 2003 Crespo, L., Agrawal, S.: Differential flatness and cooperative tracking in the Lorenz System. In: Proceedings of the American Control Conference Denver, Colorado, USA, June 2003
15.
Zurück zum Zitat Wai, R.J., Chang, J.M.: Implementation of robust wavelet-neural-network sliding-mode control for induction servo motor drive. IEEE Trans. Ind. Electron. 50(6), 1317–1334 (2003)CrossRef Wai, R.J., Chang, J.M.: Implementation of robust wavelet-neural-network sliding-mode control for induction servo motor drive. IEEE Trans. Ind. Electron. 50(6), 1317–1334 (2003)CrossRef
16.
Zurück zum Zitat Nounou, H.N., Rehman, H.: Application of adaptive fuzzy control to AC machines. Appl. Soft Comput. 7(3), 899–907 (2007)CrossRef Nounou, H.N., Rehman, H.: Application of adaptive fuzzy control to AC machines. Appl. Soft Comput. 7(3), 899–907 (2007)CrossRef
17.
Zurück zum Zitat Lin, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain non-affine nonlinear systems. Inf. Sci. 177, 3901–3917 (2007)CrossRefMATH Lin, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain non-affine nonlinear systems. Inf. Sci. 177, 3901–3917 (2007)CrossRefMATH
18.
Zurück zum Zitat Qi, R., Tao, G., Tan, C., Yao, X.: Adaptive control of discrete-time state-space TS fuzzy systems with general relative degree. Fuzzy Sets Syst. 217, 22–40 (2013)MathSciNetCrossRefMATH Qi, R., Tao, G., Tan, C., Yao, X.: Adaptive control of discrete-time state-space TS fuzzy systems with general relative degree. Fuzzy Sets Syst. 217, 22–40 (2013)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Yang, Y., Zhou, C., Jia, X.: Robust adaptive fuzzy control and its application to ship roll stabilization. Inf. Sci. 142, 177–194 (2002)CrossRefMATH Yang, Y., Zhou, C., Jia, X.: Robust adaptive fuzzy control and its application to ship roll stabilization. Inf. Sci. 142, 177–194 (2002)CrossRefMATH
20.
Zurück zum Zitat Tong, S., Li, H.-X., Chen, G.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans. Syst. Man Cybern. B 34(1), 770–775 (2004)CrossRef Tong, S., Li, H.-X., Chen, G.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans. Syst. Man Cybern. B 34(1), 770–775 (2004)CrossRef
21.
Zurück zum Zitat Fliess, M., Mounier, H.: Tracking control and \(\pi \)-freeness of infinite dimensional linear systems. In: Picci, G., Gilliam, D.S. (eds.) Dynamical Systems Control Coding and Computer Vision, vol. 258, pp. 41–68. Birkhaüser, Basel (1999) Fliess, M., Mounier, H.: Tracking control and \(\pi \)-freeness of infinite dimensional linear systems. In: Picci, G., Gilliam, D.S. (eds.) Dynamical Systems Control Coding and Computer Vision, vol. 258, pp. 41–68. Birkhaüser, Basel (1999)
22.
Zurück zum Zitat Laroche, B., Martin, P., Petit, N.: Commande par platitude: Equations différentielles ordinaires et aux derivées partielles. Ecole Nationale Supérieure des Techniques Avancées, Paris (2007) Laroche, B., Martin, P., Petit, N.: Commande par platitude: Equations différentielles ordinaires et aux derivées partielles. Ecole Nationale Supérieure des Techniques Avancées, Paris (2007)
23.
Zurück zum Zitat Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22, 47–90 (2011)MathSciNetCrossRefMATH Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22, 47–90 (2011)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Martin, P., Rouchon, P.: Systèmes plats: planification et suivi des trajectoires. Journées X-UPS, École des Mines de Paris, Centre Automatique et Systèmes (1999) Martin, P., Rouchon, P.: Systèmes plats: planification et suivi des trajectoires. Journées X-UPS, École des Mines de Paris, Centre Automatique et Systèmes (1999)
25.
Zurück zum Zitat Rudolph, J.: Flatness Based Control of Distributed Parameter Systems: Examples and Computer Exercises from Various Technological Domains. Shaker Verlag, Aachen (2003) Rudolph, J.: Flatness Based Control of Distributed Parameter Systems: Examples and Computer Exercises from Various Technological Domains. Shaker Verlag, Aachen (2003)
26.
Zurück zum Zitat Sira-Ramirez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekker, New York (2004)MATH Sira-Ramirez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekker, New York (2004)MATH
27.
Zurück zum Zitat Villagra, J., d’Andrea-Novel, B., Mounier, H., Pengov, M.: Flatness-based vehicle steering control strategy with SDRE feedback gains tuned via a sensitivity approach. IEEE Trans. Control Syst. Technol. 15, 554–565 (2007)CrossRef Villagra, J., d’Andrea-Novel, B., Mounier, H., Pengov, M.: Flatness-based vehicle steering control strategy with SDRE feedback gains tuned via a sensitivity approach. IEEE Trans. Control Syst. Technol. 15, 554–565 (2007)CrossRef
28.
Zurück zum Zitat Yue, H., Li, J.: Output-feedback adaptive fuzzy control for a class of nonlinear time-varying delay systems with unknown control directions. IET Control Theory Appl. 6, 1266–1280 (2012)MathSciNetCrossRef Yue, H., Li, J.: Output-feedback adaptive fuzzy control for a class of nonlinear time-varying delay systems with unknown control directions. IET Control Theory Appl. 6, 1266–1280 (2012)MathSciNetCrossRef
29.
Zurück zum Zitat Cho, Y.W., Park, C.W., Kim, J.H., Park, M.: Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model. IET Proc. Control Theory Appl. 148(4), 273–282 (2005)MathSciNetCrossRef Cho, Y.W., Park, C.W., Kim, J.H., Park, M.: Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model. IET Proc. Control Theory Appl. 148(4), 273–282 (2005)MathSciNetCrossRef
30.
Zurück zum Zitat Rigatos, G., Al-Khazraji, A.: Flatness-Based Adaptive Fuzzy Control for MIMO Nonlinear Dynamical Systems. In: Nonlinear Estimation and Applications to Industrial Systems Control, Nova Publications (2011) Rigatos, G., Al-Khazraji, A.: Flatness-Based Adaptive Fuzzy Control for MIMO Nonlinear Dynamical Systems. In: Nonlinear Estimation and Applications to Industrial Systems Control, Nova Publications (2011)
31.
Zurück zum Zitat Rigatos, G.G.: Adaptive fuzzy control with output feedback for \(H_{\infty }\) tracking of SISO nonlinear systems. Int. J. Neural Syst. 18(4), 1–16 (2008)CrossRef Rigatos, G.G.: Adaptive fuzzy control with output feedback for \(H_{\infty }\) tracking of SISO nonlinear systems. Int. J. Neural Syst. 18(4), 1–16 (2008)CrossRef
32.
Zurück zum Zitat Rigatos, G.G.: A Differential Flatness Theory Approach to Observer-Based Adaptive Fuzzy Control of MIMO Nonlinear Dynamical Systems, Nonlinear Dynamics. Springer, Berlin (2014)MATH Rigatos, G.G.: A Differential Flatness Theory Approach to Observer-Based Adaptive Fuzzy Control of MIMO Nonlinear Dynamical Systems, Nonlinear Dynamics. Springer, Berlin (2014)MATH
33.
Zurück zum Zitat Rigatos, G.G., Tzafestas, S.G.: Adaptive fuzzy control for the ship steering problem. J. Mechatron. 16(6), 479–489 (2006)CrossRef Rigatos, G.G., Tzafestas, S.G.: Adaptive fuzzy control for the ship steering problem. J. Mechatron. 16(6), 479–489 (2006)CrossRef
34.
Zurück zum Zitat Rigatos, G.G.: Adaptive fuzzy control for non-linear dynamical systems based on differential flatness theory. IET Control Theory Appl. 6(17), 2644–2656 (2012)MathSciNetCrossRef Rigatos, G.G.: Adaptive fuzzy control for non-linear dynamical systems based on differential flatness theory. IET Control Theory Appl. 6(17), 2644–2656 (2012)MathSciNetCrossRef
35.
Zurück zum Zitat Rigatos, G.G.: Adaptive fuzzy control of DC motors using state and output feedback. Electr. Power Syst. Res. 79(11), 1579–1592 (2009)CrossRef Rigatos, G.G.: Adaptive fuzzy control of DC motors using state and output feedback. Electr. Power Syst. Res. 79(11), 1579–1592 (2009)CrossRef
36.
Zurück zum Zitat Yousef, H.A., Hamdy, M., Shafiq, M.: Flatness-based adaptive fuzzy output tracking excitation control for power system generators. J. Frankl. Ins. 350, 2334–2353 (2013)MathSciNetCrossRefMATH Yousef, H.A., Hamdy, M., Shafiq, M.: Flatness-based adaptive fuzzy output tracking excitation control for power system generators. J. Frankl. Ins. 350, 2334–2353 (2013)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Rigatos, G.G.: Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotics and Industrial Engineering. Springer, Berlin (2011)CrossRefMATH Rigatos, G.G.: Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotics and Industrial Engineering. Springer, Berlin (2011)CrossRefMATH
38.
Zurück zum Zitat Rigatos, G.G.: Advanced Models of Neural Networks: Nonlinear Dynamics and Stochasticity of Biological Neurons. Springer, Heidelberg (2013)MATH Rigatos, G.G.: Advanced Models of Neural Networks: Nonlinear Dynamics and Stochasticity of Biological Neurons. Springer, Heidelberg (2013)MATH
39.
Zurück zum Zitat Rigatos, G.G.: Differential Flatness Approaches to Nonlinear Filtering and Control: Applications to Electromechanical Systems. Springer, New York (2015)CrossRefMATH Rigatos, G.G.: Differential Flatness Approaches to Nonlinear Filtering and Control: Applications to Electromechanical Systems. Springer, New York (2015)CrossRefMATH
40.
Zurück zum Zitat Rigatos, G., Zhang, Q.: Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009)MathSciNetCrossRefMATH Rigatos, G., Zhang, Q.: Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Bassevile, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993) Bassevile, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993)
42.
Zurück zum Zitat Kurylowicz, A., Jaworska, I., Tzafestas, S.G.: Robust stabilizing control: an overview. In: Tzafestas, S.G. (ed.) Applied Control: Current Trends and Modern Methodologies, pp. 289–324. Marcel Dekker, New York (1993) Kurylowicz, A., Jaworska, I., Tzafestas, S.G.: Robust stabilizing control: an overview. In: Tzafestas, S.G. (ed.) Applied Control: Current Trends and Modern Methodologies, pp. 289–324. Marcel Dekker, New York (1993)
43.
Zurück zum Zitat Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed. In: Francis, B., Tannenbaum, A. (eds.) Lectures Notes in Control and Information Sciences: Feedback Control, Nonlinear Systems and Complexity, pp. 150–172. Springer, New York (1995)CrossRef Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed. In: Francis, B., Tannenbaum, A. (eds.) Lectures Notes in Control and Information Sciences: Feedback Control, Nonlinear Systems and Complexity, pp. 150–172. Springer, New York (1995)CrossRef
44.
Zurück zum Zitat Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)MathSciNetCrossRefMATH Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Farinwata, S., Filev, D., Langari, R.: Fuzzy Control: Synthesis and Analysis. Wiley, Chichester (2000)MATH Farinwata, S., Filev, D., Langari, R.: Fuzzy Control: Synthesis and Analysis. Wiley, Chichester (2000)MATH
Metadaten
Titel
Flatness-Based Adaptive Neurofuzzy Control of Chaotic Dynamical Systems
verfasst von
G. Rigatos
P. Siano
Publikationsdatum
01.12.2016
Verlag
Springer Singapore
Erschienen in
Intelligent Industrial Systems / Ausgabe 4/2016
Print ISSN: 2363-6912
Elektronische ISSN: 2199-854X
DOI
https://doi.org/10.1007/s40903-016-0055-8

Weitere Artikel der Ausgabe 4/2016

Intelligent Industrial Systems 4/2016 Zur Ausgabe

Neuer Inhalt