Skip to main content

2024 | OriginalPaper | Buchkapitel

Flexible k-anonymity Scheme Suitable for Different Scenarios in Social Networks

verfasst von : Mingmeng Zhang, Yuanjing Hao, Pengao Lu, Liang Chang, Long Li

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Social networks not only help expand interpersonal interactions, enable data analysis, and implement intelligent recommendations, but also can deeply examine social structures and dynamic changes between individuals, making them an indispensable part of contemporary society. However, malicious entities pose a significant threat to user identity and relationship information within social networks, raising concerns about privacy and security issues. Although existing k-anonymity schemes provide certain privacy protection, they lack the flexibility to adjust the intensity of privacy protection according to specific scenarios and user preferences, thus seriously compromising the utility of anonymized data. Based on the isomorphic algorithm, this paper proposes a new structural anonymity algorithm called α-partial isomorphic anonymity (α-PIA) to meet the privacy protection and data usage requirements in different scenarios of social networks. By capturing graph structure features at different levels to calculate the similarity between nodes, α-PIA can improve clustering quality. Extensive experiments are carried out based on two public datasets. Experimental results show that compared with similar schemes, α-PIA achieves better results in terms of information loss, average clustering coefficient and average shortest path length and better balances the privacy protection and practicality of graph data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Siddula, M., Li, Y., Cheng, X., Tian, Z., Cai, Z.: Anonymization in online social networks based on enhanced Equi-cardinal clustering. IEEE Trans. C. Soc. Syst. 6(4), 809–820 (2019)CrossRef Siddula, M., Li, Y., Cheng, X., Tian, Z., Cai, Z.: Anonymization in online social networks based on enhanced Equi-cardinal clustering. IEEE Trans. C. Soc. Syst. 6(4), 809–820 (2019)CrossRef
2.
Zurück zum Zitat Zhang, S., Hu, B., Liang, W., Li, K.-C., Gupta, B.B.: A caching-based dual K-anonymous location privacy-preserving scheme for edge computing. IEEE Internet Things J. 10(11), 9768–9781 (2023)CrossRef Zhang, S., Hu, B., Liang, W., Li, K.-C., Gupta, B.B.: A caching-based dual K-anonymous location privacy-preserving scheme for edge computing. IEEE Internet Things J. 10(11), 9768–9781 (2023)CrossRef
3.
Zurück zum Zitat Mauw, S., Ramírez-Cruz, Y., Trujillo-Rasua, R.: Preventing active re-identification attacks on social graphs via sybil subgraph obfuscation. Knowl. Inf. Syst. 64(4), 1077–1100 (2022)CrossRef Mauw, S., Ramírez-Cruz, Y., Trujillo-Rasua, R.: Preventing active re-identification attacks on social graphs via sybil subgraph obfuscation. Knowl. Inf. Syst. 64(4), 1077–1100 (2022)CrossRef
4.
Zurück zum Zitat Zhao, Y., Chen, J.: A survey on differential privacy for unstructured data content. ACM Comput. Surv. 54(10s), 1–28 (2022)CrossRef Zhao, Y., Chen, J.: A survey on differential privacy for unstructured data content. ACM Comput. Surv. 54(10s), 1–28 (2022)CrossRef
5.
Zurück zum Zitat Jiang, H., Pei, J., Yu, D., Yu, J., Gong, B., Cheng, X.: Applications of differential privacy in social network analysis: a survey. IEEE Trans. Knowl. Data Eng. 35(1), 108–127 (2023) Jiang, H., Pei, J., Yu, D., Yu, J., Gong, B., Cheng, X.: Applications of differential privacy in social network analysis: a survey. IEEE Trans. Knowl. Data Eng. 35(1), 108–127 (2023)
6.
Zurück zum Zitat Hou, L., Ni, W., Zhang, S., Fu, N., Zhang, D.: PPDU: dynamic graph publication with local differential privacy. Knowl. Inf. Syst. 65(7), 2965–2989 (2023)CrossRef Hou, L., Ni, W., Zhang, S., Fu, N., Zhang, D.: PPDU: dynamic graph publication with local differential privacy. Knowl. Inf. Syst. 65(7), 2965–2989 (2023)CrossRef
7.
Zurück zum Zitat Ding, X., Wang, C., Choo, K.K.R., Jin, H.: A novel privacy preserving framework for large scale graph data publishing. IEEE Trans. Knowl. Data Eng. 33(2), 331–343 (2019) Ding, X., Wang, C., Choo, K.K.R., Jin, H.: A novel privacy preserving framework for large scale graph data publishing. IEEE Trans. Knowl. Data Eng. 33(2), 331–343 (2019)
8.
Zurück zum Zitat Zhang, E., Li, H., Huang, Y., Hong, S., Zhao, L., Ji, C.: Practical multi-party private collaborative k-means clustering. Neuro Comput. 467, 256–265 (2022) Zhang, E., Li, H., Huang, Y., Hong, S., Zhao, L., Ji, C.: Practical multi-party private collaborative k-means clustering. Neuro Comput. 467, 256–265 (2022)
9.
Zurück zum Zitat Sowmyarani, C.N., Namya, L.G., Nidhi, G.K., Kumar, P.R.: Enhanced k-Anonymity model based on clustering to overcome Temporal attack in Privacy Preserving Data Publishing. In: IEEE Int. Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–6. IEEE, Bangalore, India (2022) Sowmyarani, C.N., Namya, L.G., Nidhi, G.K., Kumar, P.R.: Enhanced k-Anonymity model based on clustering to overcome Temporal attack in Privacy Preserving Data Publishing. In: IEEE Int. Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–6. IEEE, Bangalore, India (2022)
10.
Zurück zum Zitat Kacha, L., Zitouni, A., Djoudi, M.: KAB: a new k-anonymity approach based on black hole algorithm. J. King Saud Univ. Comput. Inf. Sci. 34(7), 4075–4088 (2022) Kacha, L., Zitouni, A., Djoudi, M.: KAB: a new k-anonymity approach based on black hole algorithm. J. King Saud Univ. Comput. Inf. Sci. 34(7), 4075–4088 (2022)
11.
Zurück zum Zitat Xiang, N., Ma, X.: TKDA: An Improved Method for K-degree Anonymity in Social Graphs. In: IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE, Rhodes, Greece (2022) Xiang, N., Ma, X.: TKDA: An Improved Method for K-degree Anonymity in Social Graphs. In: IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE, Rhodes, Greece (2022)
12.
Zurück zum Zitat Lu, X., Song, Y., Bressan, S.: Fast identity anonymization on graphs. In: 23rd International Conference on Database and Expert Systems Applications (DEXA), pp. 281–295. Springer, Vienna, Austria (2012) Lu, X., Song, Y., Bressan, S.: Fast identity anonymization on graphs. In: 23rd International Conference on Database and Expert Systems Applications (DEXA), pp. 281–295. Springer, Vienna, Austria (2012)
13.
Zurück zum Zitat Casas-Roma, J., Herrera-Joancomartí, J., Torra, V.: K-Degree anonymity and edge selection: improving data utility in large networks. Knowl. Inf. Syst. 50(2), 447–474 (2017)CrossRef Casas-Roma, J., Herrera-Joancomartí, J., Torra, V.: K-Degree anonymity and edge selection: improving data utility in large networks. Knowl. Inf. Syst. 50(2), 447–474 (2017)CrossRef
14.
Zurück zum Zitat Kiabod, M., Dehkordi, M.N., Barekatain, B.: TSRAM: A time-saving k-degree anonymization method in social network. Expert Syst. Appl. 125, 378–396 (2019)CrossRef Kiabod, M., Dehkordi, M.N., Barekatain, B.: TSRAM: A time-saving k-degree anonymization method in social network. Expert Syst. Appl. 125, 378–396 (2019)CrossRef
15.
Zurück zum Zitat Kiabod, M., Dehkordi, M.N., Barekatain, B.: A fast graph modification method for social network anonymization. Expert Syst. Appl. 180, 115148 (2021)CrossRef Kiabod, M., Dehkordi, M.N., Barekatain, B.: A fast graph modification method for social network anonymization. Expert Syst. Appl. 180, 115148 (2021)CrossRef
16.
Zurück zum Zitat Tripathy, B.K., Panda, G.K.: A New Approach to Manage Security against Neighborhood Attacks in Social Networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 264–269. IEEE, Odense, Denmark (2010) Tripathy, B.K., Panda, G.K.: A New Approach to Manage Security against Neighborhood Attacks in Social Networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 264–269. IEEE, Odense, Denmark (2010)
17.
Zurück zum Zitat Zou, L., Chen, L., Ozsu, M.T.: K-Automorphism: a general framework for privacy preserving network publication. Proc. VLDB Endowment 2(1), 946–957 (2009)CrossRef Zou, L., Chen, L., Ozsu, M.T.: K-Automorphism: a general framework for privacy preserving network publication. Proc. VLDB Endowment 2(1), 946–957 (2009)CrossRef
18.
Zurück zum Zitat Cheng, J., Fu A.W., Liu, J.: K-isomorphism: privacy preserving network publication against structural attacks. In: 2010 ACM SIGMOD International Conference Management of data on Management of data, pp. 459–470. ACM, Indianapolis Indiana, America (2010) Cheng, J., Fu A.W., Liu, J.: K-isomorphism: privacy preserving network publication against structural attacks. In: 2010 ACM SIGMOD International Conference Management of data on Management of data, pp. 459–470. ACM, Indianapolis Indiana, America (2010)
19.
Zurück zum Zitat Zhang, H., Lin, L., Xu, L., Wang, X.: Graph partition based privacy-preserving scheme in social networks. J. Netw. Comput. Appl. 195, 103214 (2021)CrossRef Zhang, H., Lin, L., Xu, L., Wang, X.: Graph partition based privacy-preserving scheme in social networks. J. Netw. Comput. Appl. 195, 103214 (2021)CrossRef
20.
Zurück zum Zitat Adam, Ó.Conghaile.: Cohomology in constraint satisfaction and structure isomorphism. In: 47th International Symposium on Mathematical Foundations of Computer Science, p. 75:1–75:16. Leibniz-Zentrum für Informatik, Vienna, Austria (2022) Adam, Ó.Conghaile.: Cohomology in constraint satisfaction and structure isomorphism. In: 47th International Symposium on Mathematical Foundations of Computer Science, p. 75:1–75:16. Leibniz-Zentrum für Informatik, Vienna, Austria (2022)
23.
Zurück zum Zitat Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: 29th AAAI Conference on Artificial Intelligence, pp. 4292–4293 (2015) Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: 29th AAAI Conference on Artificial Intelligence, pp. 4292–4293 (2015)
Metadaten
Titel
Flexible k-anonymity Scheme Suitable for Different Scenarios in Social Networks
verfasst von
Mingmeng Zhang
Yuanjing Hao
Pengao Lu
Liang Chang
Long Li
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_26