Skip to main content
Erschienen in: Journal of Materials Science 19/2020

06.04.2020 | Polymers & biopolymers

Flexible metal-free hybrid hydrogel thermoelectric fibers

verfasst von: Jing Liu, Zhengyou Zhu, Weiqiang Zhou, Peipei Liu, Peng Liu, Guoqiang Liu, Jingkun Xu, Qinglin Jiang, Fengxing Jiang

Erschienen in: Journal of Materials Science | Ausgabe 19/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fiber has been developed as a more promising candidate compared with bulk and film to achieve wearable thermoelectric energy harvesting. Single-walled carbon nanotubes (SWCNTs) with nanostructures are considered as an effective conductive filter for the further improvement in the thermoelectric (TE) performance of PEDOT:PSS fibers. However, the previous research primarily focused on PEDOT:PSS/SWCNT films instead of fibers. In this study, PEDOT:PSS/SWCNT hybrid fibers were synthesized via gelation process, which presents a 30% enhancement of the electrical conductivity with negligible changes in Seebeck coefficient. Moreover, there was a significant increase in the Young’s modulus in accordance with the addition of an appropriate amount of SWCNTs. Thereafter, the as-prepared hybrid fibers were treated using ethylene glycol (EG) to further optimize the TE performance. Moreover, the influence of the treatment time and temperature was systematically investigated. The EG treatment resulted in a significant improvement in the electrical conductivity without a significant decrease in the Seebeck coefficient. Furthermore, the hybrid fibers were subject to EG treatment at elevated temperature, whose optimal power factor was approximately 30% higher than that of the EG-treated PEDOT:PSS/SWCNT fibers at 25 °C. This indicates that the solvent treatment at higher temperature improves the TE performance of hybrid fibers. The findings of this study can serve as a guide for the preparation of flexible and metal-free hybrid fiber with enhanced TE performance and Young’s modulus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Peng M, Dong B, Zou D (2018) Three dimensional photovoltaic fibers for wearable energy harvesting and conversion. J Energy Chem. 27:611–621CrossRef Peng M, Dong B, Zou D (2018) Three dimensional photovoltaic fibers for wearable energy harvesting and conversion. J Energy Chem. 27:611–621CrossRef
4.
Zurück zum Zitat Li C, Jiang F, Liu C, Liu P, Xu J (2019) Present and future thermoelectric materials toward wearable energy harvesting. Appl Mater Today 15:543–557CrossRef Li C, Jiang F, Liu C, Liu P, Xu J (2019) Present and future thermoelectric materials toward wearable energy harvesting. Appl Mater Today 15:543–557CrossRef
6.
Zurück zum Zitat Jia Y, Shen L, Liu J, Zhou W, Du Y, Xu J, Liu C, Zhang G, Zhang Z, Jiang F (2019) An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors. J Mater Chem C 7:3496–3502CrossRef Jia Y, Shen L, Liu J, Zhou W, Du Y, Xu J, Liu C, Zhang G, Zhang Z, Jiang F (2019) An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors. J Mater Chem C 7:3496–3502CrossRef
8.
Zurück zum Zitat Zhang Y, Park SJ (2019) Flexible organic thermoelectric materials and devices for wearable green energy harvesting. Polymers 11:909–927CrossRef Zhang Y, Park SJ (2019) Flexible organic thermoelectric materials and devices for wearable green energy harvesting. Polymers 11:909–927CrossRef
9.
Zurück zum Zitat Lin Y, Liu J, Wang X, Xu J, Liu P, Nie G, Liu C, Jiang F (2019). An integral p-n connected all-graphene fiber boosting wearable thermoelectric energy harvesting. Compos Commun 16:79–83CrossRef Lin Y, Liu J, Wang X, Xu J, Liu P, Nie G, Liu C, Jiang F (2019). An integral p-n connected all-graphene fiber boosting wearable thermoelectric energy harvesting. Compos Commun 16:79–83CrossRef
11.
Zurück zum Zitat Li X, Wang T, Jiang F, Liu J, Liu P, Liu G, Xu J, Liu C, Jiang Q (2019) Optimizing thermoelectric performance of MoS2 films by spontaneous noble metal nanoparticles decoration. J. Alloys Compd. 781:744–750CrossRef Li X, Wang T, Jiang F, Liu J, Liu P, Liu G, Xu J, Liu C, Jiang Q (2019) Optimizing thermoelectric performance of MoS2 films by spontaneous noble metal nanoparticles decoration. J. Alloys Compd. 781:744–750CrossRef
13.
Zurück zum Zitat Ni D, Song H, Chen Y, Cai K (2019) Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy 170:53–61CrossRef Ni D, Song H, Chen Y, Cai K (2019) Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy 170:53–61CrossRef
16.
Zurück zum Zitat Yao B, Wang H, Zhou Q, Wu M, Zhang M, Li C, Shi G (2017) Ultrahigh‐conductivity polymer hydrogels with arbitrary structures. Adv Mater 29:1700974CrossRef Yao B, Wang H, Zhou Q, Wu M, Zhang M, Li C, Shi G (2017) Ultrahigh‐conductivity polymer hydrogels with arbitrary structures. Adv Mater 29:1700974CrossRef
17.
Zurück zum Zitat Zhao Y, Wang K, Li S, Zhang P, Shen Y, Fu Y, Zhang Y, Zhou J, Wang C (2018) Polydimethylsiloxane (PDMS)-based flexible optical electrodes with conductive composite hydrogels integrated probe for optogenetics. J Biomed Nanotechnol 14:1099–1106CrossRef Zhao Y, Wang K, Li S, Zhang P, Shen Y, Fu Y, Zhang Y, Zhou J, Wang C (2018) Polydimethylsiloxane (PDMS)-based flexible optical electrodes with conductive composite hydrogels integrated probe for optogenetics. J Biomed Nanotechnol 14:1099–1106CrossRef
18.
Zurück zum Zitat Cao S, Tong X, Dai K, Xu Q (2019) A super-stretchable and tough functionalized boron nitride/PEDOT: PSS/poly (N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J Mater Chem A 7:8204–8209CrossRef Cao S, Tong X, Dai K, Xu Q (2019) A super-stretchable and tough functionalized boron nitride/PEDOT: PSS/poly (N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J Mater Chem A 7:8204–8209CrossRef
19.
Zurück zum Zitat Lu B, Yuk H, Lin S, Jian N, Qu K, Xu J, Zhao X (2019) Pure PEDOT: PSS hydrogels. Nat Commun 10:1043CrossRef Lu B, Yuk H, Lin S, Jian N, Qu K, Xu J, Zhao X (2019) Pure PEDOT: PSS hydrogels. Nat Commun 10:1043CrossRef
20.
Zurück zum Zitat Liu J, Jia YH, Jiang QL, Jiang FX, Li CC, Wang XD, Liu P, Liu PP, Hu F, Du YK, Xu JK (2018) Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces 10:44033–44040CrossRef Liu J, Jia YH, Jiang QL, Jiang FX, Li CC, Wang XD, Liu P, Liu PP, Hu F, Du YK, Xu JK (2018) Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces 10:44033–44040CrossRef
21.
Zurück zum Zitat Cheng X, Wang L, Wang X, Chen G (2018) Flexible films of poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate)/SnS nanobelt thermoelectric composites. Compos Sci Technol 155:247–251CrossRef Cheng X, Wang L, Wang X, Chen G (2018) Flexible films of poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate)/SnS nanobelt thermoelectric composites. Compos Sci Technol 155:247–251CrossRef
22.
Zurück zum Zitat Xiong J, Jiang F, Shi H, Xu J, Liu C, Zhou W, Jiang Q, Zhu Z, Hu Y (2015) Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT: PSS nanofilm with hydrazine treatment. ACS Appl Mater Interfaces 7:14917–14925CrossRef Xiong J, Jiang F, Shi H, Xu J, Liu C, Zhou W, Jiang Q, Zhu Z, Hu Y (2015) Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT: PSS nanofilm with hydrazine treatment. ACS Appl Mater Interfaces 7:14917–14925CrossRef
24.
Zurück zum Zitat Jiang F, Xiong J, Zhou W, Liu C, Wang L, Zhao F, Liu H, Xu J (2016) Use of organic solvent-assisted exfoliated MoS 2 for optimizing the thermoelectric performance of flexible PEDOT: PSS thin films. J Mater Chem A 4:5265–5273CrossRef Jiang F, Xiong J, Zhou W, Liu C, Wang L, Zhao F, Liu H, Xu J (2016) Use of organic solvent-assisted exfoliated MoS 2 for optimizing the thermoelectric performance of flexible PEDOT: PSS thin films. J Mater Chem A 4:5265–5273CrossRef
25.
Zurück zum Zitat Mahakul PC, Sa K, Das B, Subramaniam BVRS, Saha S, Moharana B, Raiguru J, Dash S, Mukherjee J, Mahanandia P (2017) Preparation and characterization of PEDOT: PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J Mater Sci 52:5696–5707CrossRef Mahakul PC, Sa K, Das B, Subramaniam BVRS, Saha S, Moharana B, Raiguru J, Dash S, Mukherjee J, Mahanandia P (2017) Preparation and characterization of PEDOT: PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J Mater Sci 52:5696–5707CrossRef
26.
Zurück zum Zitat Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate). ACS Nano 4:513–523CrossRef Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate). ACS Nano 4:513–523CrossRef
27.
Zurück zum Zitat Lee W, Kang YH, Lee JY, Jang K-S, Cho SY (2016) Improving the thermoelectric power factor of CNT/PEDOT: PSS nanocomposite films by ethylene glycol treatment. RSC Adv 6:53339–53344CrossRef Lee W, Kang YH, Lee JY, Jang K-S, Cho SY (2016) Improving the thermoelectric power factor of CNT/PEDOT: PSS nanocomposite films by ethylene glycol treatment. RSC Adv 6:53339–53344CrossRef
28.
Zurück zum Zitat Song H, Qiu Y, Wang Y, Cai K, Li D, Deng Y, He J (2017) Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos Sci Technol 153:71–83CrossRef Song H, Qiu Y, Wang Y, Cai K, Li D, Deng Y, He J (2017) Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos Sci Technol 153:71–83CrossRef
29.
Zurück zum Zitat Yoo D, Kim J, Lee SH, Cho W, Choi HH, Kim FS, Kim JH (2015) Effects of one-and two-dimensional carbon hybridization of PEDOT: PSS on the power factor of polymer thermoelectric energy conversion devices. J Mater Chem A 3:6526–6533CrossRef Yoo D, Kim J, Lee SH, Cho W, Choi HH, Kim FS, Kim JH (2015) Effects of one-and two-dimensional carbon hybridization of PEDOT: PSS on the power factor of polymer thermoelectric energy conversion devices. J Mater Chem A 3:6526–6533CrossRef
30.
Zurück zum Zitat Wang X, Wang H, Liu B (2018) Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 10:1196–1218CrossRef Wang X, Wang H, Liu B (2018) Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 10:1196–1218CrossRef
31.
Zurück zum Zitat Yu C, Choi K, Yin L, Grunlan JC (2011) Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5:7885–7892CrossRef Yu C, Choi K, Yin L, Grunlan JC (2011) Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5:7885–7892CrossRef
32.
Zurück zum Zitat Gojny F, Wichmann M, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65:2300–2313CrossRef Gojny F, Wichmann M, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65:2300–2313CrossRef
33.
Zurück zum Zitat Ouyang J, Xu Q, Chu C-W, Yang Y, Li G, Shinar J (2004) On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer 45:8443–8450CrossRef Ouyang J, Xu Q, Chu C-W, Yang Y, Li G, Shinar J (2004) On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer 45:8443–8450CrossRef
34.
Zurück zum Zitat Mengistie DA, Chen CH, Boopathi KM, Pranoto FW, Li LJ, Chu CW (2015) Enhanced thermoelectric performance of PEDOT: PSS flexible bulky papers by treatment with secondary dopants. ACS Appl Mater Interfaces 7:94–100CrossRef Mengistie DA, Chen CH, Boopathi KM, Pranoto FW, Li LJ, Chu CW (2015) Enhanced thermoelectric performance of PEDOT: PSS flexible bulky papers by treatment with secondary dopants. ACS Appl Mater Interfaces 7:94–100CrossRef
35.
Zurück zum Zitat Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723CrossRef Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723CrossRef
36.
Zurück zum Zitat Lee CS, Kim JY, Lee DE, Koo YK, Joo J, Han S, Beag YW, Koh SK (2003) Organic based flexible speaker through enhanced conductivity of PEDOT/PSS with various solvents. Synth Met 135–136:13–14CrossRef Lee CS, Kim JY, Lee DE, Koo YK, Joo J, Han S, Beag YW, Koh SK (2003) Organic based flexible speaker through enhanced conductivity of PEDOT/PSS with various solvents. Synth Met 135–136:13–14CrossRef
37.
Zurück zum Zitat Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics. Springer, New York Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics. Springer, New York
38.
Zurück zum Zitat Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef
39.
Zurück zum Zitat Lourie O, Wagner HD (1998) Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Appl Phys Lett 73:3527–3529CrossRef Lourie O, Wagner HD (1998) Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Appl Phys Lett 73:3527–3529CrossRef
40.
41.
Zurück zum Zitat Zhou J, Li EQ, Li R, Xu X, Ventura IA, Moussawi A, Anjum DH, Hedhili MN, Smilgies D-M, Lubineau G, Thoroddsen ST (2015) Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J Mater Chem C 3:2528–2538CrossRef Zhou J, Li EQ, Li R, Xu X, Ventura IA, Moussawi A, Anjum DH, Hedhili MN, Smilgies D-M, Lubineau G, Thoroddsen ST (2015) Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J Mater Chem C 3:2528–2538CrossRef
42.
Zurück zum Zitat Jalili R, Razal JM, Wallace GG (2012) Exploiting high quality PEDOT: PSS–SWNT composite formulations for wet-spinning multifunctional fibers. J Mater Chem 22(48):25174–25182CrossRef Jalili R, Razal JM, Wallace GG (2012) Exploiting high quality PEDOT: PSS–SWNT composite formulations for wet-spinning multifunctional fibers. J Mater Chem 22(48):25174–25182CrossRef
43.
Zurück zum Zitat Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45:256–261CrossRef Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45:256–261CrossRef
44.
Zurück zum Zitat Greco F, Zucca A, Taccola S, Menciassi A, Fujie T, Haniuda H, Takeoka S, Dario P, Mattoli V (2011) Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7:10642–10650CrossRef Greco F, Zucca A, Taccola S, Menciassi A, Fujie T, Haniuda H, Takeoka S, Dario P, Mattoli V (2011) Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7:10642–10650CrossRef
45.
Zurück zum Zitat Seyedin MZ, Razal JM, Innis PC, Wallace GG (2014) Strain‐responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity. Adv Funct Mater 24:2957–2966CrossRef Seyedin MZ, Razal JM, Innis PC, Wallace GG (2014) Strain‐responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity. Adv Funct Mater 24:2957–2966CrossRef
46.
Zurück zum Zitat Zhou J, Fukawa T, Shirai H, Kimura M (2010) Anisotropic motion of electroactive papers coated with PEDOT/PSS. Macromol Mater Eng 295:671–675CrossRef Zhou J, Fukawa T, Shirai H, Kimura M (2010) Anisotropic motion of electroactive papers coated with PEDOT/PSS. Macromol Mater Eng 295:671–675CrossRef
47.
Zurück zum Zitat Moriarty GP, De S, King PJ, Khan U, Via M, King JA, Coleman JN, Grunlan JC (2013) Thermoelectric behavior of organic thin film nanocomposites. J Polym Sci, Part B: Polym Phys 51:119–123CrossRef Moriarty GP, De S, King PJ, Khan U, Via M, King JA, Coleman JN, Grunlan JC (2013) Thermoelectric behavior of organic thin film nanocomposites. J Polym Sci, Part B: Polym Phys 51:119–123CrossRef
48.
Zurück zum Zitat He M, Ge J, Lin Z, Feng X, Wang X, Lu H, Yang Y, Qiu F (2012) Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ Sci 5:8351–8358CrossRef He M, Ge J, Lin Z, Feng X, Wang X, Lu H, Yang Y, Qiu F (2012) Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ Sci 5:8351–8358CrossRef
49.
Zurück zum Zitat Coates NE, Yee SK, McCulloch B, See KC, Majumdar A, Segalman RA, Urban JJ (2013) Effect of interfacial properties on polymer–nanocrystal thermoelectric transport. Adv Mater 25:1629–1633CrossRef Coates NE, Yee SK, McCulloch B, See KC, Majumdar A, Segalman RA, Urban JJ (2013) Effect of interfacial properties on polymer–nanocrystal thermoelectric transport. Adv Mater 25:1629–1633CrossRef
52.
Zurück zum Zitat Yu C, Kim Y, Kim D, Grunlan J (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428–4432CrossRef Yu C, Kim Y, Kim D, Grunlan J (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428–4432CrossRef
54.
Zurück zum Zitat Li X, Liu C, Zhou W, Duan X, Du Y, Xu J, Li C, Liu J, Jia Y, Liu P, Jiang Q, Luo C, Liu C, Jiang F (2019) Roles of polyethylenimine ethoxylated in efficiently tuning the thermoelectric performance of poly(3,4-ethylenedioxythiophene)-rich nanocrystal films. ACS Appl Mater Interfaces 11:8138–8147CrossRef Li X, Liu C, Zhou W, Duan X, Du Y, Xu J, Li C, Liu J, Jia Y, Liu P, Jiang Q, Luo C, Liu C, Jiang F (2019) Roles of polyethylenimine ethoxylated in efficiently tuning the thermoelectric performance of poly(3,4-ethylenedioxythiophene)-rich nanocrystal films. ACS Appl Mater Interfaces 11:8138–8147CrossRef
55.
Zurück zum Zitat Wang X, Liu P, Jiang Q, Zhou W, Xu J, Liu J, Jia Y, Duan X, Liu Y, Du Y, Jiang F (2018) Efficient DMSO-vapor annealing for enhancing thermoelectric performance of PEDOT: PSS-based aerogel. ACS Appl Mater Interfaces 11:2408–2417CrossRef Wang X, Liu P, Jiang Q, Zhou W, Xu J, Liu J, Jia Y, Duan X, Liu Y, Du Y, Jiang F (2018) Efficient DMSO-vapor annealing for enhancing thermoelectric performance of PEDOT: PSS-based aerogel. ACS Appl Mater Interfaces 11:2408–2417CrossRef
56.
Zurück zum Zitat Lim K, Jung S, Lee S, Heo J, Park J, Kang J-W, Kang Y-C, Kim D-G (2014) The enhancement of electrical and optical properties of PEDOT: PSS using one-step dynamic etching for flexible application. Org Electron 15:1849–1855CrossRef Lim K, Jung S, Lee S, Heo J, Park J, Kang J-W, Kang Y-C, Kim D-G (2014) The enhancement of electrical and optical properties of PEDOT: PSS using one-step dynamic etching for flexible application. Org Electron 15:1849–1855CrossRef
57.
Zurück zum Zitat Zhang L, Harima Y, Imae I (2017) Highly improved thermoelectric performances of PEDOT: PSS/SWCNT composites by solvent treatment. Org Electron 51:304–307CrossRef Zhang L, Harima Y, Imae I (2017) Highly improved thermoelectric performances of PEDOT: PSS/SWCNT composites by solvent treatment. Org Electron 51:304–307CrossRef
58.
Zurück zum Zitat Yan H, Jo T, Okuzaki H (2009) Highly conductive and transparent poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate)(PEDOT/PSS) thin films. Polym J 41:1028–1029CrossRef Yan H, Jo T, Okuzaki H (2009) Highly conductive and transparent poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate)(PEDOT/PSS) thin films. Polym J 41:1028–1029CrossRef
59.
Zurück zum Zitat Jalili R, Razal JM, Innis PC, Wallace GG (2011) One‐step wet‐spinning process of poly (3, 4‐ethylenedioxythiophene): poly (styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21:3363–3370CrossRef Jalili R, Razal JM, Innis PC, Wallace GG (2011) One‐step wet‐spinning process of poly (3, 4‐ethylenedioxythiophene): poly (styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21:3363–3370CrossRef
60.
Zurück zum Zitat Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J, Jiang F (2018) High-performance hybrid organic thermoelectric SWNTs/PEDOT: PSS thin-films for energy harvesting. Mater Chem Front 2:679–685CrossRef Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J, Jiang F (2018) High-performance hybrid organic thermoelectric SWNTs/PEDOT: PSS thin-films for energy harvesting. Mater Chem Front 2:679–685CrossRef
61.
Zurück zum Zitat Song H, Liu C, Xu J, Jiang Q, Shi H (2013) Fabrication of a layered nanostructure PEDOT: PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 3(4):22065–22071CrossRef Song H, Liu C, Xu J, Jiang Q, Shi H (2013) Fabrication of a layered nanostructure PEDOT: PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 3(4):22065–22071CrossRef
62.
Zurück zum Zitat Kim J-Y, Lee W, Kang YH, Cho SY, Jang K-S (2018) Wet-spinning and post-treatment of CNT/PEDOT: PSS composites for use in organic fiber-based thermoelectric generators. Carbon 133:293–299CrossRef Kim J-Y, Lee W, Kang YH, Cho SY, Jang K-S (2018) Wet-spinning and post-treatment of CNT/PEDOT: PSS composites for use in organic fiber-based thermoelectric generators. Carbon 133:293–299CrossRef
Metadaten
Titel
Flexible metal-free hybrid hydrogel thermoelectric fibers
verfasst von
Jing Liu
Zhengyou Zhu
Weiqiang Zhou
Peipei Liu
Peng Liu
Guoqiang Liu
Jingkun Xu
Qinglin Jiang
Fengxing Jiang
Publikationsdatum
06.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04382-3

Weitere Artikel der Ausgabe 19/2020

Journal of Materials Science 19/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.