Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2016

01.08.2016

Flexible models for spike count data with both over- and under- dispersion

verfasst von: Ian H. Stevenson

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A key observation in systems neuroscience is that neural responses vary, even in controlled settings where stimuli are held constant. Many statistical models assume that trial-to-trial spike count variability is Poisson, but there is considerable evidence that neurons can be substantially more or less variable than Poisson depending on the stimuli, attentional state, and brain area. Here we examine a set of spike count models based on the Conway-Maxwell-Poisson (COM-Poisson) distribution that can flexibly account for both over- and under-dispersion in spike count data. We illustrate applications of this noise model for Bayesian estimation of tuning curves and peri-stimulus time histograms. We find that COM-Poisson models with group/observation-level dispersion, where spike count variability is a function of time or stimulus, produce more accurate descriptions of spike counts compared to Poisson models as well as negative-binomial models often used as alternatives. Since dispersion is one determinant of parameter standard errors, COM-Poisson models are also likely to yield more accurate model comparison. More generally, these methods provide a useful, model-based framework for inferring both the mean and variability of neural responses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Amarasingham, A., Chen, T.-L., Geman, S., Harrison, M. T., & Sheinberg, D. L. (2006). Spike count reliability and the Poisson hypothesis. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(3), 801–809. doi:10.1523/JNEUROSCI.2948-05.2006.CrossRef Amarasingham, A., Chen, T.-L., Geman, S., Harrison, M. T., & Sheinberg, D. L. (2006). Spike count reliability and the Poisson hypothesis. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(3), 801–809. doi:10.​1523/​JNEUROSCI.​2948-05.​2006.CrossRef
Zurück zum Zitat Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7(5), 358–366.CrossRefPubMed Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7(5), 358–366.CrossRefPubMed
Zurück zum Zitat Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19(6), 2209.PubMed Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19(6), 2209.PubMed
Zurück zum Zitat Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001). Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105(1), 25–37. doi:10.1016/S0165-0270(00)00344-7.CrossRefPubMed Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001). Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105(1), 25–37. doi:10.​1016/​S0165-0270(00)00344-7.CrossRefPubMed
Zurück zum Zitat Berry, M. J., & Meister, M. (1998). Refractoriness and neural precision. The Journal of Neuroscience : The official Journal of the Society for Neuroscience, 18(6), 2200–2211. Berry, M. J., & Meister, M. (1998). Refractoriness and neural precision. The Journal of Neuroscience : The official Journal of the Society for Neuroscience, 18(6), 2200–2211.
Zurück zum Zitat Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745.PubMed Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745.PubMed
Zurück zum Zitat Brown, E., Barbieri, R., Eden, U., & Frank, L. (2003). Likelihood methods for neural data analysis. In J. Feng (Ed.), Computational Neuroscience: A comprehensive approach (pp. 253–286). London: Chapman and Hall. Brown, E., Barbieri, R., Eden, U., & Frank, L. (2003). Likelihood methods for neural data analysis. In J. Feng (Ed.), Computational Neuroscience: A comprehensive approach (pp. 253–286). London: Chapman and Hall.
Zurück zum Zitat Cameron, A. C., & Trivedi, P. K. (2001). Essentials of count data regression. In A companion to theoretical econometrics (Vol. 331). Blackwell Publishing Ltd. Cameron, A. C., & Trivedi, P. K. (2001). Essentials of count data regression. In A companion to theoretical econometrics (Vol. 331). Blackwell Publishing Ltd.
Zurück zum Zitat Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G., & Shenoy, K. V. (2006). Neural variability in premotor cortex provides a signature of motor preparation. Journal of Neuroscience, 26(14), 3697.CrossRefPubMed Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G., & Shenoy, K. V. (2006). Neural variability in premotor cortex provides a signature of motor preparation. Journal of Neuroscience, 26(14), 3697.CrossRefPubMed
Zurück zum Zitat Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., et al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378. doi:10.1038/nn.2501.CrossRefPubMedPubMedCentral Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., et al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378. doi:10.​1038/​nn.​2501.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cronin, B., Stevenson, I. H., Sur, M., & Kording, K. P. (2010). Hierarchical Bayesian modeling and Markov Chain Monte Carlo sampling for tuning-curve analysis. Journal of Neurophysiology, 103(1), 591.CrossRefPubMed Cronin, B., Stevenson, I. H., Sur, M., & Kording, K. P. (2010). Hierarchical Bayesian modeling and Markov Chain Monte Carlo sampling for tuning-curve analysis. Journal of Neurophysiology, 103(1), 591.CrossRefPubMed
Zurück zum Zitat De Boor, C. (1978). A practical guide to splines. Applied mathematical sciences 27. Verlag: Springer.CrossRef De Boor, C. (1978). A practical guide to splines. Applied mathematical sciences 27. Verlag: Springer.CrossRef
Zurück zum Zitat DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in auditory cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(21), 7940–7949. DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in auditory cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(21), 7940–7949.
Zurück zum Zitat Gao, Y., Buesing, L., Shenoy, K. V, & Cunningham, J. P. (2015). High-dimensional neural spike train analysis with generalized count linear dynamical systems. In NIPS. Gao, Y., Buesing, L., Shenoy, K. V, & Cunningham, J. P. (2015). High-dimensional neural spike train analysis with generalized count linear dynamical systems. In NIPS.
Zurück zum Zitat Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: applications to Poisson models. Econometrica, 52(3), 701–720.CrossRef Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: applications to Poisson models. Econometrica, 52(3), 701–720.CrossRef
Zurück zum Zitat Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsáki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424(6948), 552–556.CrossRefPubMed Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsáki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424(6948), 552–556.CrossRefPubMed
Zurück zum Zitat Hoffman, M., & Gelman, A. (2014). The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 30. Hoffman, M., & Gelman, A. (2014). The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 30.
Zurück zum Zitat Hoyer, P. O., Hyvarinen, A., & Hyvärinen, A. (2003). Interpreting neural response variability as Monte Carlo sampling of the posterior (Vol. 15, pp. 277–284,). MIT Press. Hoyer, P. O., Hyvarinen, A., & Hyvärinen, A. (2003). Interpreting neural response variability as Monte Carlo sampling of the posterior (Vol. 15, pp. 277–284,). MIT Press.
Zurück zum Zitat Hussar, C., & Pasternak, T. (2010). Trial-to-trial variability of the prefrontal neurons reveals the nature of their engagement in a motion discrimination task. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21842–7. doi:10.1073/pnas.1009956107.CrossRefPubMedPubMedCentral Hussar, C., & Pasternak, T. (2010). Trial-to-trial variability of the prefrontal neurons reveals the nature of their engagement in a motion discrimination task. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21842–7. doi:10.​1073/​pnas.​1009956107.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13(8), 1713–1720.CrossRefPubMed Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13(8), 1713–1720.CrossRefPubMed
Zurück zum Zitat Kaufman, C. G., Ventura, V., & Kass, R. E. (2005). Spline-based non-parametric regression for periodic functions and its application to directional tuning of neurons, 24(14), 2255–2265. Kaufman, C. G., Ventura, V., & Kass, R. E. (2005). Spline-based non-parametric regression for periodic functions and its application to directional tuning of neurons, 24(14), 2255–2265.
Zurück zum Zitat Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike a model for the responses of visual neurons. Neuron, 30(3), 803–817.CrossRefPubMed Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike a model for the responses of visual neurons. Neuron, 30(3), 803–817.CrossRefPubMed
Zurück zum Zitat Lansky, P., & Vaillant, J. (2000). Stochastic model of the overdispersion in place cell discharge. Biosystems, 58(1), 27–32.CrossRefPubMed Lansky, P., & Vaillant, J. (2000). Stochastic model of the overdispersion in place cell discharge. Biosystems, 58(1), 27–32.CrossRefPubMed
Zurück zum Zitat Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.CrossRefPubMed Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.CrossRefPubMed
Zurück zum Zitat Mandelblat-Cerf, Y., Paz, R., & Vaadia, E. (2009). Trial-to-trial variability of single cells in motor cortices is dynamically modified during visuomotor adaptation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29(48), 15053–62. doi:10.1523/JNEUROSCI.3011-09.2009.CrossRef Mandelblat-Cerf, Y., Paz, R., & Vaadia, E. (2009). Trial-to-trial variability of single cells in motor cortices is dynamically modified during visuomotor adaptation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29(48), 15053–62. doi:10.​1523/​JNEUROSCI.​3011-09.​2009.CrossRef
Zurück zum Zitat Nawrot, M. P. (2010). Analysis and interpretation of interval and count variability in neural spike trains. In Analysis of parallel spike trains (pp. 37–58). Springer. Nawrot, M. P. (2010). Analysis and interpretation of interval and count variability in neural spike trains. In Analysis of parallel spike trains (pp. 37–58). Springer.
Zurück zum Zitat Paninski, L., Ahmadian, Y., Ferreira, D. G., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010). A new look at state-space models for neural data. Journal of Computational Neuroscience, 29(1), 107–126. doi:10.1007/s10827-009-0179-x.CrossRefPubMed Paninski, L., Ahmadian, Y., Ferreira, D. G., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010). A new look at state-space models for neural data. Journal of Computational Neuroscience, 29(1), 107–126. doi:10.​1007/​s10827-009-0179-x.CrossRefPubMed
Zurück zum Zitat Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25(47), 11003–11013.CrossRefPubMed Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25(47), 11003–11013.CrossRefPubMed
Zurück zum Zitat Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., & Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.CrossRefPubMedPubMedCentral Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., & Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sanger, T. D. (1996). Probability density estimation for the interpretation of neural population codes. Journal of Neurophysiology, 76(4), 2790–2793.PubMed Sanger, T. D. (1996). Probability density estimation for the interpretation of neural population codes. Journal of Neurophysiology, 76(4), 2790–2793.PubMed
Zurück zum Zitat Scaglione, A., Moxon, K. A., Aguilar, J., & Foffani, G. (2011). Trial-to-trial variability in the responses of neurons carries information about stimulus location in the rat whisker thalamus. Proceedings of the National Academy of Sciences of the United States of America, 108(36), 14956–61. doi:10.1073/pnas.1103168108.CrossRefPubMedPubMedCentral Scaglione, A., Moxon, K. A., Aguilar, J., & Foffani, G. (2011). Trial-to-trial variability in the responses of neurons carries information about stimulus location in the rat whisker thalamus. Proceedings of the National Academy of Sciences of the United States of America, 108(36), 14956–61. doi:10.​1073/​pnas.​1103168108.CrossRefPubMedPubMedCentral
Zurück zum Zitat Schölvinck, M. L., Saleem, A. B., Benucci, A., Harris, K. D., & Carandini, M. (2015). Cortical state determines global variability and correlations in visual cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35(1), 170–8. doi:10.1523/JNEUROSCI.4994-13.2015.CrossRef Schölvinck, M. L., Saleem, A. B., Benucci, A., Harris, K. D., & Carandini, M. (2015). Cortical state determines global variability and correlations in visual cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35(1), 170–8. doi:10.​1523/​JNEUROSCI.​4994-13.​2015.CrossRef
Zurück zum Zitat Sellers, K. F., & Shmueli, G. (2009). A regression model for count data with observation-level dispersion. In 24th International Workshop on Statistical Modelling (IWSM). Sellers, K. F., & Shmueli, G. (2009). A regression model for count data with observation-level dispersion. In 24th International Workshop on Statistical Modelling (IWSM).
Zurück zum Zitat Sellers, K. F., & Shmueli, G. (2010). A flexible regression model for count data. The Annals of Applied Statistics, 943–961. Sellers, K. F., & Shmueli, G. (2010). A flexible regression model for count data. The Annals of Applied Statistics, 943–961.
Zurück zum Zitat Sellers, K. F., & Shmueli, G. (2013). Data dispersion: Now you see it… now you don’t. Communications in Statistics-Theory and Methods, 42(17), 3134–3147.CrossRef Sellers, K. F., & Shmueli, G. (2013). Data dispersion: Now you see it… now you don’t. Communications in Statistics-Theory and Methods, 42(17), 3134–3147.CrossRef
Zurück zum Zitat Sellers, K. F., Borle, S., & Shmueli, G. (2012). The COM-Poisson model for count data: a survey of methods and applications. Applied Stochastic Models in Business and Industry, 28(2), 104–116.CrossRef Sellers, K. F., Borle, S., & Shmueli, G. (2012). The COM-Poisson model for count data: a survey of methods and applications. Applied Stochastic Models in Business and Industry, 28(2), 104–116.CrossRef
Zurück zum Zitat Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.PubMed Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.PubMed
Zurück zum Zitat Shidara, M., Mizuhiki, T., & Richmond, B. J. (2005). Neuronal firing in anterior cingulate neurons changes modes across trials in single states of multitrial reward schedules. Experimental Brain Research, 163(2), 242–5. doi:10.1007/s00221-005-2232-y.CrossRefPubMed Shidara, M., Mizuhiki, T., & Richmond, B. J. (2005). Neuronal firing in anterior cingulate neurons changes modes across trials in single states of multitrial reward schedules. Experimental Brain Research, 163(2), 242–5. doi:10.​1007/​s00221-005-2232-y.CrossRefPubMed
Zurück zum Zitat Shmueli, G., Minka, T., Kadane, J., Borle, S., & Boatwright, P. (2004). A useful distribution for fitting discrete data:revival of the conway-Maxwell_Poisson distribution. Applied Statistic, 54(1), 127–142. Shmueli, G., Minka, T., Kadane, J., Borle, S., & Boatwright, P. (2004). A useful distribution for fitting discrete data:revival of the conway-Maxwell_Poisson distribution. Applied Statistic, 54(1), 127–142.
Zurück zum Zitat Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 13(1), 334–350. Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 13(1), 334–350.
Zurück zum Zitat Stevenson, I. H., Rebesco, J. M., Miller, L. E., & Körding, K. P. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.CrossRefPubMedPubMedCentral Stevenson, I. H., Rebesco, J. M., Miller, L. E., & Körding, K. P. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.CrossRefPubMedPubMedCentral
Zurück zum Zitat Taouali, W., Benvenuti, G., Wallisch, P., Chavane, F., & Perrinet, L. U. (2016). Testing the odds of inherent vs. observed overdispersion in neural spike counts. Journal of Neurophysiology, 115(1), 434–44. doi:10.1152/jn.00194.2015.CrossRefPubMed Taouali, W., Benvenuti, G., Wallisch, P., Chavane, F., & Perrinet, L. U. (2016). Testing the odds of inherent vs. observed overdispersion in neural spike counts. Journal of Neurophysiology, 115(1), 434–44. doi:10.​1152/​jn.​00194.​2015.CrossRefPubMed
Zurück zum Zitat Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2), 1074–1089.CrossRefPubMed Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2), 1074–1089.CrossRefPubMed
Zurück zum Zitat van Steveninck, R. R. R., Lewen, G. D., Strong, S. P., Koberle, R., & Bialek, W. (1997). Reproducibility and variability in neural spike trains. Science, 275(5307), 1805–1808.CrossRef van Steveninck, R. R. R., Lewen, G. D., Strong, S. P., Koberle, R., & Bialek, W. (1997). Reproducibility and variability in neural spike trains. Science, 275(5307), 1805–1808.CrossRef
Zurück zum Zitat Vogel, A., Hennig, R. M., & Ronacher, B. (2005). Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. Journal of Neurophysiology, 93(6), 3548–59. doi:10.1152/jn.01288.2004.CrossRefPubMed Vogel, A., Hennig, R. M., & Ronacher, B. (2005). Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. Journal of Neurophysiology, 93(6), 3548–59. doi:10.​1152/​jn.​01288.​2004.CrossRefPubMed
Zurück zum Zitat Werner, G., & Mountcastle, V. B. (1963). The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. Journal of Neurophysiology, 26(6), 958–977.PubMed Werner, G., & Mountcastle, V. B. (1963). The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. Journal of Neurophysiology, 26(6), 958–977.PubMed
Zurück zum Zitat Zador, A. (1998). Impact of synaptic unreliability on the information transmitted by spiking neurons. Journal of Neurophysiology, 79(3), 1219–1229.PubMed Zador, A. (1998). Impact of synaptic unreliability on the information transmitted by spiking neurons. Journal of Neurophysiology, 79(3), 1219–1229.PubMed
Zurück zum Zitat Zhao, M., & Iyengar, S. (2010). Nonconvergence in logistic and poisson models for neural spiking. Neural Computation, 22(5), 1231–1244.CrossRefPubMed Zhao, M., & Iyengar, S. (2010). Nonconvergence in logistic and poisson models for neural spiking. Neural Computation, 22(5), 1231–1244.CrossRefPubMed
Zurück zum Zitat Zhu, L., Morris, D. S., Sellers, K. F., & Shmueli, G. (2015). Bridging the gap: a generalized stochastic process for count data. Under Review. Zhu, L., Morris, D. S., Sellers, K. F., & Shmueli, G. (2015). Bridging the gap: a generalized stochastic process for count data. Under Review.
Metadaten
Titel
Flexible models for spike count data with both over- and under- dispersion
verfasst von
Ian H. Stevenson
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2016
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0603-y

Weitere Artikel der Ausgabe 1/2016

Journal of Computational Neuroscience 1/2016 Zur Ausgabe