Skip to main content
Erschienen in: Journal of Materials Science 7/2019

14.12.2018 | Metals

Flexible silver nanowire transparent conductive films prepared by an electrostatic adsorption self-assembly process

Erschienen in: Journal of Materials Science | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we reported a facile approach to fabricate silver nanowire (AgNW) networks on flexible substrates. Through immersing the modified poly (ethylene terephthalate) with positively charged functional group into the AgNW dispersion with anionic dispersant, a flexible AgNW transparent conductive film was formed by electrostatic adsorption self-assembly process. Even without a post-treatment process, the as-prepared flexible AgNW films exhibited excellent optoelectrical property, low surface roughness and high reliability. It was shown that the insulating dispersant on AgNWs could be effectively removed by an ion bombardment method and then greatly decreased the sheet resistance of AgNW networks. Because of the nature of spontaneous adsorption, this preparation method can be suitable for an arbitrary shaped substrate, which will broaden the application of AgNW conductive films in optoelectronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 91:1529–1598CrossRef Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 91:1529–1598CrossRef
2.
Zurück zum Zitat Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23:2905–2910CrossRef Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23:2905–2910CrossRef
3.
Zurück zum Zitat Du JH, Pei SF, Ma LP, Cheng HM (2014) Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater 26:1958–1991CrossRef Du JH, Pei SF, Ma LP, Cheng HM (2014) Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater 26:1958–1991CrossRef
4.
Zurück zum Zitat De Arco LG, Zhang Y, Schlenker CW, Ryu KM, Thompson ME, Zhou CW (2010) Continuous, highly flexible, and transparent granphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873CrossRef De Arco LG, Zhang Y, Schlenker CW, Ryu KM, Thompson ME, Zhou CW (2010) Continuous, highly flexible, and transparent granphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873CrossRef
5.
Zurück zum Zitat Lee H, Kim M, Kim I, Lee H (2016) Flexible and stretchable optoelectronic devices using silver nanowires and graphene. Adv. Mater. 28:4541–4548CrossRef Lee H, Kim M, Kim I, Lee H (2016) Flexible and stretchable optoelectronic devices using silver nanowires and graphene. Adv. Mater. 28:4541–4548CrossRef
6.
Zurück zum Zitat Kumar A, Zhou CW (2010) The race to replace tin-doped indium oxide: which material will win. ACS Nano 4:11–14CrossRef Kumar A, Zhou CW (2010) The race to replace tin-doped indium oxide: which material will win. ACS Nano 4:11–14CrossRef
7.
Zurück zum Zitat Zhang QC, Tang L, Luo J, Zhang J, Wang XN, Li D, Yao YG, Zhang ZX (2017) Direct growth of nanocrystalline graphene/graphite all carbon transparent electrode for graphene glass and photodetectors. Carbon 111:1–7CrossRef Zhang QC, Tang L, Luo J, Zhang J, Wang XN, Li D, Yao YG, Zhang ZX (2017) Direct growth of nanocrystalline graphene/graphite all carbon transparent electrode for graphene glass and photodetectors. Carbon 111:1–7CrossRef
8.
Zurück zum Zitat Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapor deposition. Nat Mater 10:424–428CrossRef Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapor deposition. Nat Mater 10:424–428CrossRef
9.
Zurück zum Zitat Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRef Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRef
10.
Zurück zum Zitat Zhang DH, Ryu K, Liu XL, Polikarpov E, Tompson ME, Zhou CW (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886CrossRef Zhang DH, Ryu K, Liu XL, Polikarpov E, Tompson ME, Zhou CW (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886CrossRef
11.
Zurück zum Zitat Zhai HT, Wang RR, Wang X, Cheng Y, Shi LJ, Sun J (2016) Transparent heaters based on highly stable Cu nanowire films. Nano Res 9:3924–3936CrossRef Zhai HT, Wang RR, Wang X, Cheng Y, Shi LJ, Sun J (2016) Transparent heaters based on highly stable Cu nanowire films. Nano Res 9:3924–3936CrossRef
12.
Zurück zum Zitat Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692CrossRef Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692CrossRef
13.
Zurück zum Zitat Garnett EC, Cai WS, Cha JJ, Mahmood F, Connor ST, Christoforo MG, McGehee MD, Brongersma ML (2012) Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11:241–249CrossRef Garnett EC, Cai WS, Cha JJ, Mahmood F, Connor ST, Christoforo MG, McGehee MD, Brongersma ML (2012) Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11:241–249CrossRef
14.
Zurück zum Zitat Hu LB, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963CrossRef Hu LB, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963CrossRef
15.
Zurück zum Zitat Lee D, Lee H, Ahn Y, Lee Y (2015) High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon 81:439–446CrossRef Lee D, Lee H, Ahn Y, Lee Y (2015) High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon 81:439–446CrossRef
16.
Zurück zum Zitat Leem DS, Edwards A, Faist M, Nelson J, Bradley DDC, Mello JCD (2011) Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater 23:4371–4375CrossRef Leem DS, Edwards A, Faist M, Nelson J, Bradley DDC, Mello JCD (2011) Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater 23:4371–4375CrossRef
17.
Zurück zum Zitat Zhan K, Su R, Bai SH, Yu ZH, Cheng N, Wang CL, Xu S, Liu W, Guo SS, Zhao XX (2016) One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe3+ & Cl− co-mediated polyol method and their application as transparent conductive films. Nanoscale 8:18121–18133CrossRef Zhan K, Su R, Bai SH, Yu ZH, Cheng N, Wang CL, Xu S, Liu W, Guo SS, Zhao XX (2016) One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe3+ & Cl co-mediated polyol method and their application as transparent conductive films. Nanoscale 8:18121–18133CrossRef
18.
Zurück zum Zitat Selzer F, Weiß N, Kneppe D, Bormann L, Sachse C, Gaponik K, Eychmüller A, Leo K, Müller-Meskamp L (2015) A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale 7:2777–2783CrossRef Selzer F, Weiß N, Kneppe D, Bormann L, Sachse C, Gaponik K, Eychmüller A, Leo K, Müller-Meskamp L (2015) A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale 7:2777–2783CrossRef
19.
Zurück zum Zitat Madaria AR, Kumar A, Ishikawa FN, Zhou CW (2010) Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res 3:564–573CrossRef Madaria AR, Kumar A, Ishikawa FN, Zhou CW (2010) Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res 3:564–573CrossRef
20.
Zurück zum Zitat Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process: 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol Chem Macromol Symp 46:321–327CrossRef Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process: 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol Chem Macromol Symp 46:321–327CrossRef
21.
Zurück zum Zitat Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRef Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRef
22.
Zurück zum Zitat Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30:78–86CrossRef Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30:78–86CrossRef
23.
Zurück zum Zitat Han Y, Sukhishvili S, Du H, Cefaloni J, Smolinski B (2008) Layer-by-layer self-assembly of oppositely charged ag nanoparticles on silica microspheres for trace analysis of aqueous solutions using surface-enhanced Raman scattering. J Nanosci Nanotechnol 8:5791–5800CrossRef Han Y, Sukhishvili S, Du H, Cefaloni J, Smolinski B (2008) Layer-by-layer self-assembly of oppositely charged ag nanoparticles on silica microspheres for trace analysis of aqueous solutions using surface-enhanced Raman scattering. J Nanosci Nanotechnol 8:5791–5800CrossRef
24.
Zurück zum Zitat Lee H, Han G, Kim M, Ahn HS, Lee H (2015) High mechanical and tribological stability of an elastic ultrathin overcoating layer for flexible silver nanowire films. Adv Mater 27:2252–2259CrossRef Lee H, Han G, Kim M, Ahn HS, Lee H (2015) High mechanical and tribological stability of an elastic ultrathin overcoating layer for flexible silver nanowire films. Adv Mater 27:2252–2259CrossRef
25.
Zurück zum Zitat Yu B, Liu XM, Cong HL, Wang ZH, Lian YC, Tang JG (2014) Fabrication of stable ultrathin transparent conductive carbon nanotube micropatterns using layer-by-layer self-assembly. Fuller Nanotub Carbon Nanostructures 23:320–325CrossRef Yu B, Liu XM, Cong HL, Wang ZH, Lian YC, Tang JG (2014) Fabrication of stable ultrathin transparent conductive carbon nanotube micropatterns using layer-by-layer self-assembly. Fuller Nanotub Carbon Nanostructures 23:320–325CrossRef
26.
Zurück zum Zitat Sannicolo T, Munoz-Rojas D, Nguyen ND, Moreau S, Celle C, Simonato JP, Brechet Y, Bellet D (2016) Direct imaging of the onset of electrical conduction in silver nanowire networks by infrared thermography: evidence of geometrical quantized percolation. Nano Lett 16:7046–7053CrossRef Sannicolo T, Munoz-Rojas D, Nguyen ND, Moreau S, Celle C, Simonato JP, Brechet Y, Bellet D (2016) Direct imaging of the onset of electrical conduction in silver nanowire networks by infrared thermography: evidence of geometrical quantized percolation. Nano Lett 16:7046–7053CrossRef
27.
Zurück zum Zitat Park JH, Hwang GT, Kim S, Seo J, Park HJ, Yu K, Kim TS, Lee KJ (2017) Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv Mater 29:1603473CrossRef Park JH, Hwang GT, Kim S, Seo J, Park HJ, Yu K, Kim TS, Lee KJ (2017) Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv Mater 29:1603473CrossRef
28.
Zurück zum Zitat Kholmanov IN, Stoller MD, Edgeworth J, Lee WH, Li H, Lee J, Barnhart C, Potts JR, Piner R, Akinwande D (2012) Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano 6:5157–5163CrossRef Kholmanov IN, Stoller MD, Edgeworth J, Lee WH, Li H, Lee J, Barnhart C, Potts JR, Piner R, Akinwande D (2012) Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano 6:5157–5163CrossRef
29.
Zurück zum Zitat Uchida E, Ikada Y (1996) Introduction of quaternary amines onto a film surface by graft polymerization. J Appl Polym Sci 61:1365–1373CrossRef Uchida E, Ikada Y (1996) Introduction of quaternary amines onto a film surface by graft polymerization. J Appl Polym Sci 61:1365–1373CrossRef
30.
Zurück zum Zitat Clark DT, Thomas HR (1978) Applications of ESCA to polymer chemistry. 17. Systematic investigation of the core levels of simple homopolymers. J Polym Sci Polym Chem Ed 16:791–820CrossRef Clark DT, Thomas HR (1978) Applications of ESCA to polymer chemistry. 17. Systematic investigation of the core levels of simple homopolymers. J Polym Sci Polym Chem Ed 16:791–820CrossRef
31.
Zurück zum Zitat Yamamoto K, Motomizu S (1991) Spectrophotometric method for the determination of ionic surfactants by flow-injection analysis with acidic dyes. Anal Chim Acta 246:333–339CrossRef Yamamoto K, Motomizu S (1991) Spectrophotometric method for the determination of ionic surfactants by flow-injection analysis with acidic dyes. Anal Chim Acta 246:333–339CrossRef
32.
Zurück zum Zitat Tien HW, Hsiao ST, Liao WH, Yu YH, Lin FC, Wang YS, Li SM, Ma CCM (2013) Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive. Carbon 58:198–207CrossRef Tien HW, Hsiao ST, Liao WH, Yu YH, Lin FC, Wang YS, Li SM, Ma CCM (2013) Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive. Carbon 58:198–207CrossRef
33.
Zurück zum Zitat Zhou YZ, Yang J, Cheng XN, Zhao N, Sun HB, Li D (2013) Transparent and conductive reduced graphene oxide/silver nanoparticles multilayer film obtained by electrical self-assembly process with graphene oxide sheets and silver colloid. RSC Adv 3:3391–3398CrossRef Zhou YZ, Yang J, Cheng XN, Zhao N, Sun HB, Li D (2013) Transparent and conductive reduced graphene oxide/silver nanoparticles multilayer film obtained by electrical self-assembly process with graphene oxide sheets and silver colloid. RSC Adv 3:3391–3398CrossRef
34.
Zurück zum Zitat Chen YH, Rathmell AR, Charbonneau P, Li ZY, Wiley BJ (2012) The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4:1996–2004CrossRef Chen YH, Rathmell AR, Charbonneau P, Li ZY, Wiley BJ (2012) The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4:1996–2004CrossRef
35.
Zurück zum Zitat Lee J, Lee I, Kim TS, Lee JY (2013) Efficient welding of silver nanowire networks without post-processing. Small 9:2887–2894CrossRef Lee J, Lee I, Kim TS, Lee JY (2013) Efficient welding of silver nanowire networks without post-processing. Small 9:2887–2894CrossRef
36.
Zurück zum Zitat Guo CF, Ren ZF (2015) Flexible transparent conductors based on metal nanowire networks. Mater. Today 18:143–154CrossRef Guo CF, Ren ZF (2015) Flexible transparent conductors based on metal nanowire networks. Mater. Today 18:143–154CrossRef
37.
Zurück zum Zitat Jiang YQ, Xi J, Wu ZX, Dong H, Zhao ZX, Jiao B, Hou X (2015) Highly transparent, conductive, flexible resin films embedded with silver nanowires. Langmuir 31:4950–4957CrossRef Jiang YQ, Xi J, Wu ZX, Dong H, Zhao ZX, Jiao B, Hou X (2015) Highly transparent, conductive, flexible resin films embedded with silver nanowires. Langmuir 31:4950–4957CrossRef
Metadaten
Titel
Flexible silver nanowire transparent conductive films prepared by an electrostatic adsorption self-assembly process
Publikationsdatum
14.12.2018
Erschienen in
Journal of Materials Science / Ausgabe 7/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03235-4

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Science 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.