Skip to main content
Erschienen in: Autonomous Agents and Multi-Agent Systems 5/2015

01.09.2015

Flocking of partially-informed multi-agent systems avoiding obstacles with arbitrary shape

verfasst von: Jiaojie Li, Wei Zhang, Housheng Su, Yupu Yang

Erschienen in: Autonomous Agents and Multi-Agent Systems | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study the flocking problem of multi-agent systems with obstacle avoidance, in the situation when only a fraction of the agents have information on the obstacles. Obstacles of arbitrary shape are allowed, no matter if their boundary is smooth or non-smooth, and no matter it they are convex or non-convex. A novel geometry representation rule is proposed to transfer obstacles to a dense obstacle-agents lattice structure. Non-convex regions of the obstacles are detected and supplemented using a geometric rule. The uninformed agents can detect a section of the obstacles boundary using only a range position sensor. We prove that with the proposed protocol, uninformed agents which maintain a joint path with any informed agent can avoid obstacles that move uniformly and assemble around a point along with the informed agents. Eventually all the assembled agents reach consensus on their velocity. In the entire flocking process, no distinct pair of agents collide with each other, nor collide with obstacles. The assembled agents are guaranteed not to be lost in any non-convex region of the obstacles within a distance constraint. Numerical simulations demonstrate the flocking algorithm with obstacle avoidance both in 2D and 3D space. The situation when every agent is informed is considered as a special case.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shaw, E. (1975). Fish in schools. Natural History, 84, 40–45. Shaw, E. (1975). Fish in schools. Natural History, 84, 40–45.
2.
Zurück zum Zitat Fujisaka, H., & Yamada, T. (1983). Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 69, 32–47.MathSciNetCrossRefMATH Fujisaka, H., & Yamada, T. (1983). Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 69, 32–47.MathSciNetCrossRefMATH
3.
Zurück zum Zitat Bollobás, B. (1998). Modern graph theory (Vol. 184). New York: Springer.MATH Bollobás, B. (1998). Modern graph theory (Vol. 184). New York: Springer.MATH
4.
Zurück zum Zitat Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.CrossRef Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.CrossRef
5.
Zurück zum Zitat Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8, 501–518.CrossRefMATH Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8, 501–518.CrossRefMATH
6.
Zurück zum Zitat Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next century challenges: Scalable coordination in sensor networks. In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, ACM (pp. 263–270). Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next century challenges: Scalable coordination in sensor networks. In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, ACM (pp. 263–270).
7.
Zurück zum Zitat Song, Y., Li, Y., & Liao, X. (2005). Orthogonal transformation based robust adaptive close formation control of multi-uavs. In Proceedings of the 2005 American Control Conference, IEEE (pp. 2983–2988). Song, Y., Li, Y., & Liao, X. (2005). Orthogonal transformation based robust adaptive close formation control of multi-uavs. In Proceedings of the 2005 American Control Conference, IEEE (pp. 2983–2988).
8.
Zurück zum Zitat Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, ACM (Vol. 21, pp. 25–34). Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, ACM (Vol. 21, pp. 25–34).
9.
Zurück zum Zitat Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75, 1226–1229.CrossRef Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75, 1226–1229.CrossRef
10.
Zurück zum Zitat Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58, 4828.MathSciNetCrossRef Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58, 4828.MathSciNetCrossRef
11.
Zurück zum Zitat Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48, 988–1001.MathSciNetCrossRef Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48, 988–1001.MathSciNetCrossRef
12.
Zurück zum Zitat Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents, part i: Fixed topology. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE (Vol. 2, pp. 2010–2015). Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents, part i: Fixed topology. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE (Vol. 2, pp. 2010–2015).
13.
Zurück zum Zitat Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents part i: Dynamic topology. In Proceedings. 42nd IEEE Conference on Decision and Control, IEEE (Vol. 2, pp. 2016–2021). Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents part i: Dynamic topology. In Proceedings. 42nd IEEE Conference on Decision and Control, IEEE (Vol. 2, pp. 2016–2021).
14.
Zurück zum Zitat Savkin, A. V. (2004). Coordinated collective motion of groups of autonomous mobile robots: Analysis of vicsek’s model. IEEE Transactions on Automatic Control, 49, 981–982.MathSciNetCrossRef Savkin, A. V. (2004). Coordinated collective motion of groups of autonomous mobile robots: Analysis of vicsek’s model. IEEE Transactions on Automatic Control, 49, 981–982.MathSciNetCrossRef
15.
Zurück zum Zitat Leonard, N. E., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE (Vol. 3, pp. 2968–2973). Leonard, N. E., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE (Vol. 3, pp. 2968–2973).
16.
Zurück zum Zitat Xi, X., & Abed, E. H. (2005). Formation control with virtual leaders and reduced communications. In Proceedings of 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, CDC-ECC’05, IEEE, Seville (pp. 1854–1860). Xi, X., & Abed, E. H. (2005). Formation control with virtual leaders and reduced communications. In Proceedings of 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, CDC-ECC’05, IEEE, Seville (pp. 1854–1860).
17.
Zurück zum Zitat Su, H., Wang, X., & Yang, W. (2008). Flocking in multi-agent systems with multiple virtual leaders. Asian Journal of Control, 10, 238–245.MathSciNetCrossRef Su, H., Wang, X., & Yang, W. (2008). Flocking in multi-agent systems with multiple virtual leaders. Asian Journal of Control, 10, 238–245.MathSciNetCrossRef
18.
Zurück zum Zitat Hou-Sheng, S. (2012). Flocking in multi-agent systems with multiple virtual leaders based only on position measurements. Communications in Theoretical Physics, 57, 801.CrossRefMATH Hou-Sheng, S. (2012). Flocking in multi-agent systems with multiple virtual leaders based only on position measurements. Communications in Theoretical Physics, 57, 801.CrossRefMATH
19.
Zurück zum Zitat Zhang, H.-T., Zhai, C., & Chen, Z. (2011). A general alignment repulsion algorithm for flocking of multi-agent systems. IEEE Transactions on Automatic Control, 56, 430–435.MathSciNetCrossRef Zhang, H.-T., Zhai, C., & Chen, Z. (2011). A general alignment repulsion algorithm for flocking of multi-agent systems. IEEE Transactions on Automatic Control, 56, 430–435.MathSciNetCrossRef
20.
Zurück zum Zitat Regmi, A., Sandoval, R., Byrne, R., Tanner, H., & Abdallah, C. (2005). Experimental implementation of flocking algorithms in wheeled mobile robots. In Proceedings of the 2005 American Control Conference, IEEE (pp. 4917–4922). Regmi, A., Sandoval, R., Byrne, R., Tanner, H., & Abdallah, C. (2005). Experimental implementation of flocking algorithms in wheeled mobile robots. In Proceedings of the 2005 American Control Conference, IEEE (pp. 4917–4922).
21.
Zurück zum Zitat La, H. M., & Sheng, W. (2013a). Multi-agent motion control in cluttered and noisy environments. Journal of Communications, 8, 32–46.CrossRef La, H. M., & Sheng, W. (2013a). Multi-agent motion control in cluttered and noisy environments. Journal of Communications, 8, 32–46.CrossRef
22.
Zurück zum Zitat La, H. M., & Sheng, W. (2013b). Distributed sensor fusion for scalar field mapping using mobile sensor networks. IEEE Transactions on Cybernetics, 43, 766–778.CrossRef La, H. M., & Sheng, W. (2013b). Distributed sensor fusion for scalar field mapping using mobile sensor networks. IEEE Transactions on Cybernetics, 43, 766–778.CrossRef
23.
Zurück zum Zitat Tanner, H. G. (2004). Flocking with obstacle avoidance in switching networks of interconnected vehicles. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04), IEEE (Vol. 3, pp. 3006–3011). Tanner, H. G. (2004). Flocking with obstacle avoidance in switching networks of interconnected vehicles. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04), IEEE (Vol. 3, pp. 3006–3011).
24.
Zurück zum Zitat Yang, Y., Xiong, N., Chong, N. Y., & Défago, X. (2008). A decentralized and adaptive flocking algorithm for autonomous mobile robots. In The 3rd International Conference on Grid and Pervasive Computing Workshops (GPC Workshops’ 08), IEEE (pp. 262–268). Yang, Y., Xiong, N., Chong, N. Y., & Défago, X. (2008). A decentralized and adaptive flocking algorithm for autonomous mobile robots. In The 3rd International Conference on Grid and Pervasive Computing Workshops (GPC Workshops’ 08), IEEE (pp. 262–268).
25.
Zurück zum Zitat Yu, H., Zhang, T., & Jian, J. (2010). Flocking with obstacle avoidance based on fuzzy logic. In 2010, 8th IEEE International Conference on Control and Automation (ICCA), IEEE (pp. 1876–1881). Yu, H., Zhang, T., & Jian, J. (2010). Flocking with obstacle avoidance based on fuzzy logic. In 2010, 8th IEEE International Conference on Control and Automation (ICCA), IEEE (pp. 1876–1881).
26.
Zurück zum Zitat Ghorbanian, P., Nersesov, S. G., & Ashrafiuon, H. (2011). Obstacle avoidance in multi-vehicle coordinated motion via stabilization of time-varying sets. In Proceedings of the 2011 American Control Conference (ACC), IEEE (pp. 3381–3386). Ghorbanian, P., Nersesov, S. G., & Ashrafiuon, H. (2011). Obstacle avoidance in multi-vehicle coordinated motion via stabilization of time-varying sets. In Proceedings of the 2011 American Control Conference (ACC), IEEE (pp. 3381–3386).
27.
Zurück zum Zitat Yan, J., Guan, X., Luo, X., & Tan, F. (2011). Formation and obstacle avoidance control for multiagent systems. Journal of Control Theory and Applications, 9, 141–147.MathSciNetCrossRef Yan, J., Guan, X., Luo, X., & Tan, F. (2011). Formation and obstacle avoidance control for multiagent systems. Journal of Control Theory and Applications, 9, 141–147.MathSciNetCrossRef
28.
Zurück zum Zitat La, H. M., & Sheng, W. (2012). Dynamic target tracking and observing in a mobile sensor network. Robotics and Autonomous Systems, 60, 996–1009.CrossRef La, H. M., & Sheng, W. (2012). Dynamic target tracking and observing in a mobile sensor network. Robotics and Autonomous Systems, 60, 996–1009.CrossRef
29.
Zurück zum Zitat Kimmel, A., Dobson, A., & Bekris, K. (2012). Maintaining team coherence under the velocity obstacle framework. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, (Vol. 1, pp. 247–256). Kimmel, A., Dobson, A., & Bekris, K. (2012). Maintaining team coherence under the velocity obstacle framework. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, (Vol. 1, pp. 247–256).
30.
Zurück zum Zitat Hu, N., & Wu, S. (2012). Flocking of multi-agents with conic obstacle avoidance. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE) (Vol. 1, pp. 126–132). Hu, N., & Wu, S. (2012). Flocking of multi-agents with conic obstacle avoidance. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE) (Vol. 1, pp. 126–132).
31.
Zurück zum Zitat Saber, R. O., & Murray, R. M. (2003). Flocking with obstacle avoidance: Cooperation with limited communication in mobile networks. In Proceedings of the 42nd IEEE Conference on Decision and Control (Vol. 2, pp. 2022–2028). Saber, R. O., & Murray, R. M. (2003). Flocking with obstacle avoidance: Cooperation with limited communication in mobile networks. In Proceedings of the 42nd IEEE Conference on Decision and Control (Vol. 2, pp. 2022–2028).
32.
Zurück zum Zitat Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51, 401–420.MathSciNetCrossRef Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51, 401–420.MathSciNetCrossRef
33.
Zurück zum Zitat Su, H., Wang, X., & Lin, Z. (2009). Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 54, 293–307.MathSciNetCrossRef Su, H., Wang, X., & Lin, Z. (2009). Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 54, 293–307.MathSciNetCrossRef
Metadaten
Titel
Flocking of partially-informed multi-agent systems avoiding obstacles with arbitrary shape
verfasst von
Jiaojie Li
Wei Zhang
Housheng Su
Yupu Yang
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Autonomous Agents and Multi-Agent Systems / Ausgabe 5/2015
Print ISSN: 1387-2532
Elektronische ISSN: 1573-7454
DOI
https://doi.org/10.1007/s10458-014-9272-2

Weitere Artikel der Ausgabe 5/2015

Autonomous Agents and Multi-Agent Systems 5/2015 Zur Ausgabe