Skip to main content

2020 | Buch

Flood Prevention and Drought Relief in Mekong River Basin

insite
SUCHEN

Über dieses Buch

This book provides an overview of flood and drought in the Lower Mekong Basin, reviews the characteristics of flood and drought, and details structural and non-structural measures for flood and drought mitigation employed in the basin countries, as well as their flood and drought mitigation capacity.

Given its scope, the book offers a valuable resource for researchers and engineers in the field of transboundary rivers, especially those with an interest in the Lower Mekong River.

Inhaltsverzeichnis

Frontmatter
Chapter 1. Overview of the Mekong River Basin
Abstract
The Lancang-Mekong River, the largest transboundary river in Southeast Asia, flows through six riparian countries, nurtures splendid culture along it. The river is called Lancang River in China, and Mekong River out of China. The Mekong River region is featured by various landscape patterns and high variability of rainfall caused by monsoon cycles. This region is also featured by high density of population, high potential of development and high international attention, which make this study more meaningful. The physical geographical feature of this region is illustrated from the aspects of topography, meteorology and hydrology in this chapter. The Socio-economy characteristics of this region is also reviewed in this chapter to provide background knowledge for the further analysis of flood and drought management. The irrigation projects and hydropower projects, main types of structural measures, are also briefly introduced from the whole basin view.
Baiyinbaoligao, Hui Liu, Xingru Chen, Xiangpeng Mu
Chapter 2. Summary of Flood and Drought in Mekong River Basin
Abstract
Flood and drought disasters occur frequently in Mekong River basin owing to ocean climate and climate change. Based on the collected floods and droughts in Mekong River basin in recent 20 years, the losses, causes and effects of flood and drought disasters are analyzed. The main conclusions are drawn as follows: (1) Flood-caused fatalities in the Mekong River Basin were most serious, 825, in 2000, followed by 2001 (489), 2011 (396), 2013 (247) and 1996 (173). Cambodia and the Cuu Long Delta, Viet Nam take the largest shares while the share is small in northeastern Thailand and Lao PDR. (2) Flood imposes significant impact on agriculture. 2000 saw the biggest agricultural impact of floods, approximately 2.50 million hm2, followed by 2011, about 500,000 hm2. Seen from the geographic distribution, agricultural impact gathered in the Cuu Long River Delta, Viet Nam in 2000, and Cambodia. (3) Flood incurs serious economic loss in countries in the basin. Cambodia ranks top by 1.4 billion USD, followed by Viet Nam by 980 million USD and Lao PDR by 590 million USD. Thailand ranks bottom by 310 million USD in 1996–2014. (4) Extreme floods take place more frequently and cause a huge loss upon the beginning of the twenty-first century. The flood loss amounted to 1.164 billion USD in 2011, taking up 35% of the gross flood loss in 1996–2014; to 651 million USD in 2013, taking up 20%; and to 462 million USD in 2000, taking up 14%. (5) Drought features extensive influence, long duration and huge economic loss. Seen from spatial distribution, drought loss is heavy in northeastern Thailand, Cambodia and Viet Nam and relatively mild in Lao PDR.
Xingru Chen, Hui Liu, Baiyinbaoligao, Xiangpeng Mu
Chapter 3. Analysis of Flood Character in the Mekong River Basin
Abstract
Mekong River Basin (MRB) has suffered huge injuries and property losses from frequent floods, which would very likely witness an increase of flood magnitude and frequency under climate change. In this chapter, we set up a distributed hydrological model (THREW) to provide fundamental analysis of the flood characteristics in the MRB, the simulation period is 1991–2016, the spatial coverage is the whole basin except the delta region due to lack of reliable topographic data. Two main types of flood in the MRB which are riverine flood and flash flood are discussed. Flood peak frequency at mainstream stations along Mekong are achieved by Pearson-III Frequency Curve Fitting. The annual flood volume and duration at mainstream stations along Mekong River are calculated and analyzed. Taking the flood volume of damaging floods at Stung Treng station (at lower reach of Mekong mainstream) as subject, the THREW model is used to analyze flood’s travel time and regional composition, which would benefit flood prevention and water resources management from a whole-basin view.
Shiyu Hou, Hui Liu, Fuqiang Tian
Chapter 4. Analysis of Drought Character in the Mekong River Basin
Abstract
Drought is among the most costly natural disasters in the Mekong River Basin (MRB). To understand the spatial and temporal characteristics of drought can largely facilitate scientific drought management and risk mitigation. Using a set of long-term (1901–2016) global monthly precipitation data and nearly 30-year (1985–2016) in situ daily observed streamflow, this chapter investigates the long-term trend and inter-annual variability of meteorological and hydrological droughts in MRB, respectively, through estimations of multi-scale Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI). Results indicate that while with slight upward trend from basin-scale perspective, the SPI is found with obvious downward trend over the northeastern Thailand, most of Cambodia and Myanmar, suggesting these regions are overall subject to intensified drying during the past half-century. The occurrence frequency of drought is over 25% across much of MRB, particularly for southern Cambodia and Mekong delta where the occurrence of extreme drought is around 10%. The hydrological drought analysis show that the trend of SRI greatly varies by in situ station location over the past 30 years. The 12-month SRI (SRI-12) for the Upper station (Chiang Saen) exhibits obvious decreasing trend, and mostly falls into the negative range, suggesting the recent frequent below-normal streamflow in Chiang Saen station. The occurrence of hydrological drought in the Middle portion is found with downward trend, as indicated with the long-term increasing SRI-12 at NongKhai and Mukdahan stations. When it comes to the downstream station (Stung Treng), while the trend of SRI seems little change, the SRI-12 value is mostly below zero since 2005, suggesting that this portion is susceptible to hydrological droughts recently. These analysis provide us an overview insight into changes in meteorological and hydrological droughts, and advance our understanding on drought variations and its long-term trend in MRB.
Xuejun Zhang, Hui Liu
Chapter 5. Overview of Measures and Assessment of Capacity for Flood Prevention and Drought Relief
Abstract
This Chapter introduces the structural and non-structural measures for flood prevention and drought relief in every country of the Mekong River Basin (MRB), and evaluates the capacities for flood prevention and drought relief to these countries. In this chapter, Some specific situations (including location, quantity and scale) of the flood prevention engineering, such as reservoirs, dikes, sluices, pumps, flood storage and detention areas etc., are introduced. The non-structural measures for flood control and disaster reduction of Mekong River Commission and other countries in the basin are introduced from the aspects of hydrological monitoring, prediction, early warning, organization and management system, emergency response, etc. The flood prevention capacity of each country in the MRB and the overall flood control capacity of the MRB are evaluated from the aspects of the per capita reservoir capacity of each country in the basin, and the flood discharge capacity of the main stream of the Mekong River, etc. In this chapter, the drought relief capacity is assessed from an analysis of the available structural and non-structural measures in the MRB using multiple disaster survey data. Specifically, three key indicators (including reservoir irrigation pattern, the proportion of irrigation area, per capita GDP) are employed to assess the water project capacity, economic strength, and drought prevention and disaster reduction response capability. Results show that the flood and drought relief capacity is mostly dependent on the support capacity from the national economy and the water conservancy project. From the national view, the flood and drought relief capacity differs by countries. Comparing with other countries, the Thailand and Viet Nam are of better capacity in response to flood and drought disasters, attributing to the enough economic investment in emergency response system and the relatively completed flood prevention and irrigation project system. In contrast, the flood prevention and irrigation project and its spatial coverage in other countries (Cambodia, Laos and Myanmar) are still in infancy, resulting in the relatively poor flood prevention and drought-coping capacity. From the basin perspective, the integrated flood prevention and drought relief capacity is weak, due to the lack of the Upper-Lower coordination scheme. This suggests the countries in the Mekong River Basin should further strengthen the coordination and communication to improve the integrated water resource emergency management, and thus explore the potential flood prevention and drought relief capacity at the basin-scale.
Zhixiong Ding, Xuejun Zhang, Song Han, Hui Liu
Chapter 6. Main Findings and Recommendations
Abstract
Based on the investigation and analysis of the losses and basic characteristics of flood and drought disasters and development status of flood prevention and drought relief projects in the Mekong River Basin countries, and evaluation of the flood prevention and drought relief capabilities of the countries in the basin, the main conclusions are summarized in this chapter from the angle of cause, flood, drought and management. To improve the flood prevention and drought relief capability of the basin, suggestions are proposed from the following three aspects. (1) Exploit potentialities and enhance the ability of countries to cope with natural disasters; (2) Make overall plans and coordinate to enhance the disaster mitigation ability from the whole-basin perspective; (3) Strengthen cooperation and carry out technical exchanges and mechanism building.
Hui Liu, Xiangpeng Mu
Backmatter
Metadaten
Titel
Flood Prevention and Drought Relief in Mekong River Basin
herausgegeben von
Dr. Hui Liu
Copyright-Jahr
2020
Verlag
Springer Singapore
Electronic ISBN
978-981-15-2006-8
Print ISBN
978-981-15-2005-1
DOI
https://doi.org/10.1007/978-981-15-2006-8