Skip to main content
Erschienen in: Microsystem Technologies 2/2020

28.05.2019 | Technical Paper

Flow feature and mixing performance analysis of RB-TSAR and EB-TSAR micromixers

verfasst von: Ranjitsinha R. Gidde, Prashant M. Pawar

Erschienen in: Microsystem Technologies | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three-dimensional CFD simulations carried to evaluate mixing performance of two designs of micromixers namely RB-TSAR and EB-TSAR. The results of flow physics analysis indicate that the interfacial area between the two flow fluids can be enhanced by creating a flow in transverse direction with the help of split and recombination of fluid streams by placing baffles in diffuser shaped mixing elements along the axial direction. Further, the simulation results indicate that at inlet Reynolds number below 1, the molecular diffusion is the most dominant mechanism of mixing, and the mixing index is almost the same for all cases. However at Re > 5, the secondary flow influencing the mixing process dramatically and thus mixing index is increased. The results also reveal that baffles can break the fluid streams, produce fluid convection and increase the contact area of the fluid by folding and deflecting which in turn helps to improve the mixing index. The split and recombination of the fluid streams and separation vortices play vital role in enhancing the mixing performance. The design configurations studied here showed mixing index higher than 0.85 for the Re in the range from 10 to 50.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Afzal A, Kim KY (2012) Passive split and recombination micromixer with convergent–divergent walls. Chem Eng J 203:182–192CrossRef Afzal A, Kim KY (2012) Passive split and recombination micromixer with convergent–divergent walls. Chem Eng J 203:182–192CrossRef
Zurück zum Zitat Ansari MA, Kim KY (2010) Mixing performance of unbalanced split and recombine micromixers with circular and rhombic sub-channels. Chem Eng J 162(2):760–767CrossRef Ansari MA, Kim KY (2010) Mixing performance of unbalanced split and recombine micromixers with circular and rhombic sub-channels. Chem Eng J 162(2):760–767CrossRef
Zurück zum Zitat Bothe D, Stemich C, Warnecke HJ (2006) Fluid mixing in a T-shaped micro-mixer. Chem Eng Sci 61(9):2950–2958CrossRef Bothe D, Stemich C, Warnecke HJ (2006) Fluid mixing in a T-shaped micro-mixer. Chem Eng Sci 61(9):2950–2958CrossRef
Zurück zum Zitat Chen X, Shen J (2017) Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units. Microsyst Technol 23(10):4671–4677CrossRef Chen X, Shen J (2017) Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units. Microsyst Technol 23(10):4671–4677CrossRef
Zurück zum Zitat Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal Chim Acta 964:142–149CrossRef Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal Chim Acta 964:142–149CrossRef
Zurück zum Zitat Chen X, Li T, Hu Z (2016a) A novel research on serpentine microchannels of passive micromixers. Microsyst Technol 23(7):2649–2656CrossRef Chen X, Li T, Hu Z (2016a) A novel research on serpentine microchannels of passive micromixers. Microsyst Technol 23(7):2649–2656CrossRef
Zurück zum Zitat Chen X, Li T, Zeng H, Hu Z, Fu B (2016b) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRef Chen X, Li T, Zeng H, Hu Z, Fu B (2016b) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRef
Zurück zum Zitat Chen X, Zhang Z, Yi D, Hu Z (2017) Numerical studies on different two-dimensional micromixers basing on a fractal-like tree network. Microsyst Technol 23(3):755–763CrossRef Chen X, Zhang Z, Yi D, Hu Z (2017) Numerical studies on different two-dimensional micromixers basing on a fractal-like tree network. Microsyst Technol 23(3):755–763CrossRef
Zurück zum Zitat Cheri MS, Latifi H, Moghaddam MS, Shahraki H (2013) Simulation and experimental investigation of planar micromixers with short-mixing-length. Chem Eng J 234:247–255CrossRef Cheri MS, Latifi H, Moghaddam MS, Shahraki H (2013) Simulation and experimental investigation of planar micromixers with short-mixing-length. Chem Eng J 234:247–255CrossRef
Zurück zum Zitat Chung CK, Shih TR (2007) A rhombic micromixer with asymmetrical flow for enhancing mixing. J Micromech Microeng 17(12):2495CrossRef Chung CK, Shih TR (2007) A rhombic micromixer with asymmetrical flow for enhancing mixing. J Micromech Microeng 17(12):2495CrossRef
Zurück zum Zitat Chung YC, Hsu YL, Jen CP, Lu MC, Lin YC (2004) Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber. Lab Chip 4(1):70–77CrossRef Chung YC, Hsu YL, Jen CP, Lu MC, Lin YC (2004) Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber. Lab Chip 4(1):70–77CrossRef
Zurück zum Zitat Chung CK, Shih TR, Chang CK, Lai CW, Wu BH (2011) Design and experiments of a short-mixing-length baffled microreactor and its application to microfluidic synthesis of nanoparticles. Chem Eng J 168(2):790–798CrossRef Chung CK, Shih TR, Chang CK, Lai CW, Wu BH (2011) Design and experiments of a short-mixing-length baffled microreactor and its application to microfluidic synthesis of nanoparticles. Chem Eng J 168(2):790–798CrossRef
Zurück zum Zitat Cortes-Quiroz CA, Zangeneh M, Goto A (2009) On multi-objective optimization of geometry of staggered herringbone micromixer. Microfluid Nanofluid 7(1):29–43CrossRef Cortes-Quiroz CA, Zangeneh M, Goto A (2009) On multi-objective optimization of geometry of staggered herringbone micromixer. Microfluid Nanofluid 7(1):29–43CrossRef
Zurück zum Zitat Cortes-Quiroz CA, Azarbadegan A, Zangeneh M (2014) Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer. Sens Actuators B Chem 202:1209–1219CrossRef Cortes-Quiroz CA, Azarbadegan A, Zangeneh M (2014) Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer. Sens Actuators B Chem 202:1209–1219CrossRef
Zurück zum Zitat Falk L, Commenge JM (2010) Performance comparison of micromixers. Chem Eng Sci 65(1):405–411CrossRef Falk L, Commenge JM (2010) Performance comparison of micromixers. Chem Eng Sci 65(1):405–411CrossRef
Zurück zum Zitat Galletti C, Roudgar M, Brunazzi E, Mauri R (2012) Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer. Chem Eng J 185:300–313CrossRef Galletti C, Roudgar M, Brunazzi E, Mauri R (2012) Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer. Chem Eng J 185:300–313CrossRef
Zurück zum Zitat Gidde RR, Pawar PM, Ronge BP, Misal ND, Kapurkar RB, Parkhe AK (2018a) Evaluation of the mixing performance in a planar passive micromixer with circular and square mixing chambers. Microsyst Technol 24(6):2599–2610CrossRef Gidde RR, Pawar PM, Ronge BP, Misal ND, Kapurkar RB, Parkhe AK (2018a) Evaluation of the mixing performance in a planar passive micromixer with circular and square mixing chambers. Microsyst Technol 24(6):2599–2610CrossRef
Zurück zum Zitat Gidde RR, Shinde AB, Pawar PM, Ronge BP (2018b) Design optimization of a rectangular wave micromixer (RWM) using Taguchi based grey relational analysis (GRA). Microsyst Technol 24(9):3651–3666CrossRef Gidde RR, Shinde AB, Pawar PM, Ronge BP (2018b) Design optimization of a rectangular wave micromixer (RWM) using Taguchi based grey relational analysis (GRA). Microsyst Technol 24(9):3651–3666CrossRef
Zurück zum Zitat Gidde RR, Pawar PM, Ronge BP, Shinde AB, Misal ND, Wangikar SS (2018c) Flow field analysis of a passive wavy micromixer with CSAR and ESAR elements. Microsyst Technol 25(3):1017–1030CrossRef Gidde RR, Pawar PM, Ronge BP, Shinde AB, Misal ND, Wangikar SS (2018c) Flow field analysis of a passive wavy micromixer with CSAR and ESAR elements. Microsyst Technol 25(3):1017–1030CrossRef
Zurück zum Zitat Gigras A, Pushpavanam S (2008) Early induction of secondary vortices for micromixing enhancement. Microfluid Nanofluid 5(1):89–99CrossRef Gigras A, Pushpavanam S (2008) Early induction of secondary vortices for micromixing enhancement. Microfluid Nanofluid 5(1):89–99CrossRef
Zurück zum Zitat Goet G, Baier T, Hardt S (2009) Micro contactor based on isotachophoretic sample transport. Lab Chip 9(24):3586–3593CrossRef Goet G, Baier T, Hardt S (2009) Micro contactor based on isotachophoretic sample transport. Lab Chip 9(24):3586–3593CrossRef
Zurück zum Zitat Hardt S, Drese K, Hessel V, Schönfeld F (2004) Passive micro mixers for applications in the micro reactor and µTAS field. In: 2nd international conference on microchannels and minichannels, American Society of Mechanical Engineers, pp 45–55 Hardt S, Drese K, Hessel V, Schönfeld F (2004) Passive micro mixers for applications in the micro reactor and µTAS field. In: 2nd international conference on microchannels and minichannels, American Society of Mechanical Engineers, pp 45–55
Zurück zum Zitat Hossain S, Kim KY (2014) Mixing analysis of passive micromixer with unbalanced three-split rhombic sub-channels. Micromachines 5(4):913–928CrossRef Hossain S, Kim KY (2014) Mixing analysis of passive micromixer with unbalanced three-split rhombic sub-channels. Micromachines 5(4):913–928CrossRef
Zurück zum Zitat Hossain S, Lee I, Kim SM, Kim KY (2017) A micromixer with two-layer serpentine crossing channels having excellent mixing performance at low Reynolds numbers. Chem Eng J 327:268–277CrossRef Hossain S, Lee I, Kim SM, Kim KY (2017) A micromixer with two-layer serpentine crossing channels having excellent mixing performance at low Reynolds numbers. Chem Eng J 327:268–277CrossRef
Zurück zum Zitat Huang SW, Wu CY, Lai BH, Chien YC (2017) Fluid mixing in a swirl-inducing microchannel with square and T-shaped crosssections. Microsyst Technol 23:1971–1981CrossRef Huang SW, Wu CY, Lai BH, Chien YC (2017) Fluid mixing in a swirl-inducing microchannel with square and T-shaped crosssections. Microsyst Technol 23:1971–1981CrossRef
Zurück zum Zitat Jain M, Rao A, Nandakumar K (2013) Numerical study on shape optimization of groove micromixers. Microfluid Nanofluid 15(5):689–699CrossRef Jain M, Rao A, Nandakumar K (2013) Numerical study on shape optimization of groove micromixers. Microfluid Nanofluid 15(5):689–699CrossRef
Zurück zum Zitat Kim DS, Lee SH, Kwon TH, Ahn CH (2005) A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5(7):739–747CrossRef Kim DS, Lee SH, Kwon TH, Ahn CH (2005) A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5(7):739–747CrossRef
Zurück zum Zitat Kuo JN, Li YS (2017) Centrifuge-based micromixer with three-dimensional square-wave microchannel for blood plasma mixing. Microsyst Technol 23:2343–2354CrossRef Kuo JN, Li YS (2017) Centrifuge-based micromixer with three-dimensional square-wave microchannel for blood plasma mixing. Microsyst Technol 23:2343–2354CrossRef
Zurück zum Zitat Liu M (2011) Computational study of convective–diffusive mixing in a microchannel mixer. Chem Eng Sci 66(10):2211–2223CrossRef Liu M (2011) Computational study of convective–diffusive mixing in a microchannel mixer. Chem Eng Sci 66(10):2211–2223CrossRef
Zurück zum Zitat Nguyen NT, Wereley S (2006) Fundamentals and applications of microfluidics. Artech House, Boston, pp 293–341MATH Nguyen NT, Wereley S (2006) Fundamentals and applications of microfluidics. Artech House, Boston, pp 293–341MATH
Zurück zum Zitat Nguyen NT, Wu Z (2004) Micromixers—a review. J Micromech Microeng 15(2):R1CrossRef Nguyen NT, Wu Z (2004) Micromixers—a review. J Micromech Microeng 15(2):R1CrossRef
Zurück zum Zitat Oh DW, Jin JS, Choi JH, Kim HY, Lee JS (2007) A microfluidic chaotic mixer using ferrofluid. J Micromech Microeng 17(10):2077CrossRef Oh DW, Jin JS, Choi JH, Kim HY, Lee JS (2007) A microfluidic chaotic mixer using ferrofluid. J Micromech Microeng 17(10):2077CrossRef
Zurück zum Zitat Okuducu M, Aral M (2018) Performance analysis and numerical evaluation of mixing in 3-D T-shape passive micromixers. Micromachines 9(5):210CrossRef Okuducu M, Aral M (2018) Performance analysis and numerical evaluation of mixing in 3-D T-shape passive micromixers. Micromachines 9(5):210CrossRef
Zurück zum Zitat Okuducu MB, Aral MM (2019) Computational evaluation of mixing performance in 3-D swirl-generating passive micromixers. Processes 7(3):121CrossRef Okuducu MB, Aral MM (2019) Computational evaluation of mixing performance in 3-D swirl-generating passive micromixers. Processes 7(3):121CrossRef
Zurück zum Zitat Ortega-Casanova J (2016) Enhancing mixing at a very low Reynolds number by a heaving square cylinder. J Fluids Struct 65:1–20CrossRef Ortega-Casanova J (2016) Enhancing mixing at a very low Reynolds number by a heaving square cylinder. J Fluids Struct 65:1–20CrossRef
Zurück zum Zitat Posner JD, Santiago JG (2006) Convective instability of electrokinetic flows in a cross-shaped microchannel. J Fluid Mech 555:1–42MATHCrossRef Posner JD, Santiago JG (2006) Convective instability of electrokinetic flows in a cross-shaped microchannel. J Fluid Mech 555:1–42MATHCrossRef
Zurück zum Zitat Pradeep A, Raveendran J, Ramachandran T, Nair BG (2016) Computational simulation and fabrication of smooth-edged passive micromixers with alternately varying diameter for efficient mixing. Microelectron Eng 165:32–40CrossRef Pradeep A, Raveendran J, Ramachandran T, Nair BG (2016) Computational simulation and fabrication of smooth-edged passive micromixers with alternately varying diameter for efficient mixing. Microelectron Eng 165:32–40CrossRef
Zurück zum Zitat Roudgar M, Brunazzi E, Galletti C, Mauri R (2012) Numerical study of split T-micromixers. Chem Eng Technol 35(7):1291–1299CrossRef Roudgar M, Brunazzi E, Galletti C, Mauri R (2012) Numerical study of split T-micromixers. Chem Eng Technol 35(7):1291–1299CrossRef
Zurück zum Zitat Sahu PK, Golia A, Sen AK (2013) Investigations into mixing of fluids in microchannels with lateral obstructions. Microsyst Technol 19:493–501CrossRef Sahu PK, Golia A, Sen AK (2013) Investigations into mixing of fluids in microchannels with lateral obstructions. Microsyst Technol 19:493–501CrossRef
Zurück zum Zitat Sarkar S, Singh KK, Shankar V, Shenoy KT (2015) CFD simulations to study the effects of wall protrusions on microfluidic mixing. J Micromech Microeng 25(8):084008CrossRef Sarkar S, Singh KK, Shankar V, Shenoy KT (2015) CFD simulations to study the effects of wall protrusions on microfluidic mixing. J Micromech Microeng 25(8):084008CrossRef
Zurück zum Zitat Shah I, Kim SW, Kim K, Doh YH, Choi KH (2019) Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units. Chem Eng J 358:691–706CrossRef Shah I, Kim SW, Kim K, Doh YH, Choi KH (2019) Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units. Chem Eng J 358:691–706CrossRef
Zurück zum Zitat Shih TR, Chung CK (2008) A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range. Microfluid Nanofluid 5(2):175–183MathSciNetCrossRef Shih TR, Chung CK (2008) A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range. Microfluid Nanofluid 5(2):175–183MathSciNetCrossRef
Zurück zum Zitat Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1:82–111CrossRef Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1:82–111CrossRef
Zurück zum Zitat The HL, Ta BQ, Thanh HL, Dong T, Thoi TN, Karlsen F (2015a) Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels. J Micromech Microeng 25:094004CrossRef The HL, Ta BQ, Thanh HL, Dong T, Thoi TN, Karlsen F (2015a) Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels. J Micromech Microeng 25:094004CrossRef
Zurück zum Zitat The HL, Thanh HL, Dong T, Ta BQ, Tran-Minh N, Karlsen F (2015b) An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chem Eng Res Des 93:1–11CrossRef The HL, Thanh HL, Dong T, Ta BQ, Tran-Minh N, Karlsen F (2015b) An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chem Eng Res Des 93:1–11CrossRef
Zurück zum Zitat Tran-Minh N, Dong T, Karlsen F (2014) An efficient passive planar micromixer with ellipse-like micropillars for continuous mixing of human blood. Comput Methods Progr Biomed 117(1):20–29CrossRef Tran-Minh N, Dong T, Karlsen F (2014) An efficient passive planar micromixer with ellipse-like micropillars for continuous mixing of human blood. Comput Methods Progr Biomed 117(1):20–29CrossRef
Zurück zum Zitat Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11(5):662CrossRef Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11(5):662CrossRef
Zurück zum Zitat Xia GD, Li YF, Wang J, Zhai YL (2016) Numerical and experimental analyses of planar micromixer with gaps and baffles based on field synergy principle. Int Commun Heat Mass Transfer 71:188–196CrossRef Xia GD, Li YF, Wang J, Zhai YL (2016) Numerical and experimental analyses of planar micromixer with gaps and baffles based on field synergy principle. Int Commun Heat Mass Transfer 71:188–196CrossRef
Zurück zum Zitat Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead- zirconate- titanate (PZT) generated ultrasonic vibration. ELECTROPHOR Int J 21(1):116-119 Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead- zirconate- titanate (PZT) generated ultrasonic vibration. ELECTROPHOR Int J 21(1):116-119
Zurück zum Zitat Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698CrossRef Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698CrossRef
Metadaten
Titel
Flow feature and mixing performance analysis of RB-TSAR and EB-TSAR micromixers
verfasst von
Ranjitsinha R. Gidde
Prashant M. Pawar
Publikationsdatum
28.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04498-w

Weitere Artikel der Ausgabe 2/2020

Microsystem Technologies 2/2020 Zur Ausgabe

Neuer Inhalt