Skip to main content
Erschienen in: Colloid and Polymer Science 10/2017

07.08.2017 | Original Contribution

Flow of carbon nanotubes submerged in water through a channel with wavy walls with convective boundary conditions

verfasst von: T. Hayat, Bilal Ahmed, F. M. Abbasi, A. Alsaedi

Erschienen in: Colloid and Polymer Science | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient heat transfer characteristics of carbon nanotubes (CNTs) extend the applications of nanofluids in various engineering and biomedical processes. Model for the peristaltic transport of nanofluid through an asymmetric channel is presented here. Analysis is carried out in the presence of viscous dissipation, mixed convection, and heat generation/absorption parameter. Convective heat transfer at the boundaries is also accounted by making use of the effective thermal conductivity of nanofluid. Mathematical modelling has been carried out in view of long wavelength and low Reynolds number approximations. Resulting nonlinear equations are solved for the development of series solutions. Series solutions for small Brinkman number are computed. Effects of sundry parameters on the axial velocity, pressure gradient, pressure rise per wavelength, temperature, streamlines, and heat transfer rate at the boundary are studied through their respective plots. Comparison between single-walled CNTs and multi-walled CNTs is also presented. Results indicate that by adding CNTs to the water, the velocity and temperature are decreased. Further, the heat transfer rate at the boundaries enhances with an increase in the CNT volume fraction. Also, the single-wall carbon nanotubes (SWCNTs) show larger heat transfer rate at the boundary when compared with the multiple-wall carbon nanotubes (MWCNTs).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div 231:99–105 Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div 231:99–105
2.
Zurück zum Zitat Dong S, Zheng L, Zhang X, Lin P (2014) Improved drag force model and its application in simulating nanofluid flow. Microfluid Nanofluid 17:253–261CrossRef Dong S, Zheng L, Zhang X, Lin P (2014) Improved drag force model and its application in simulating nanofluid flow. Microfluid Nanofluid 17:253–261CrossRef
3.
Zurück zum Zitat Zhang C, Zheng L, Zhang X, Chen G (2015) MHD Flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl Math Model 39:165–181CrossRef Zhang C, Zheng L, Zhang X, Chen G (2015) MHD Flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl Math Model 39:165–181CrossRef
4.
Zurück zum Zitat Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. I. J. Heat and Mass transfer 81:449–456CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. I. J. Heat and Mass transfer 81:449–456CrossRef
5.
Zurück zum Zitat Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. JMMM 374:36– 43CrossRef Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. JMMM 374:36– 43CrossRef
6.
Zurück zum Zitat Ul Haq R, Nadeem S, Khan ZH, Noor NFM (2015) MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E: Low-dimensional Systems and Nanostructures 73:45–53CrossRef Ul Haq R, Nadeem S, Khan ZH, Noor NFM (2015) MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E: Low-dimensional Systems and Nanostructures 73:45–53CrossRef
7.
Zurück zum Zitat Sasmal C, Nirmalkar N (2016) Momentum and heat transfer characteristics from heated spheroids in water based nanofluids. Int J Heat Mass Transf 96:582–601CrossRef Sasmal C, Nirmalkar N (2016) Momentum and heat transfer characteristics from heated spheroids in water based nanofluids. Int J Heat Mass Transf 96:582–601CrossRef
8.
Zurück zum Zitat Brickman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581CrossRef Brickman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581CrossRef
9.
Zurück zum Zitat Pan B, Wang W, Chu D, Mei L, Zhang Q (2016) Experimental investigation of hypervapotron heat transfer enhancement with alumina–water nanofluids. Int J Heat Mass Transf 98:738–745CrossRef Pan B, Wang W, Chu D, Mei L, Zhang Q (2016) Experimental investigation of hypervapotron heat transfer enhancement with alumina–water nanofluids. Int J Heat Mass Transf 98:738–745CrossRef
10.
Zurück zum Zitat Turkyilmazoglu M (2015) Exact multiple solutions for the slip flow and heat transfer in a converging channel. J Heat Transf 137:101301CrossRef Turkyilmazoglu M (2015) Exact multiple solutions for the slip flow and heat transfer in a converging channel. J Heat Transf 137:101301CrossRef
11.
Zurück zum Zitat Turkyilmazoglu M (2014) Nanofluid flow and heat transfer due to a rotating disk. Comput Fluids 94:139–146CrossRef Turkyilmazoglu M (2014) Nanofluid flow and heat transfer due to a rotating disk. Comput Fluids 94:139–146CrossRef
12.
Zurück zum Zitat Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S (2014) Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. J Mol Liq 193:174–184CrossRef Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S (2014) Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. J Mol Liq 193:174–184CrossRef
13.
Zurück zum Zitat Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663CrossRef Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663CrossRef
14.
Zurück zum Zitat Rudraswamy NG, Kumar KG, Gireesha BJ, Gorla RSR (2017) Combined effect of joule heating and viscous dissipation on MHD three dimensional flow of a jeffrey nanofluid. J of Nanofluids 6:300–310CrossRef Rudraswamy NG, Kumar KG, Gireesha BJ, Gorla RSR (2017) Combined effect of joule heating and viscous dissipation on MHD three dimensional flow of a jeffrey nanofluid. J of Nanofluids 6:300–310CrossRef
15.
Zurück zum Zitat Kumar KG, Rudraswamy NG, Gireesha BJ, Krishnamurthy MR Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating. Nonlinear Engineering 10.1515/nleng-2017-0014 Kumar KG, Rudraswamy NG, Gireesha BJ, Krishnamurthy MR Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating. Nonlinear Engineering 10.​1515/​nleng-2017-0014
16.
Zurück zum Zitat Mahanthesh B, Gireesha BJ, Manjunatha S, Gorla RSR (2017) Effect of viscous dissipation and joule heating on three-dimensional mixed convection flow of nano fluid over a non-linear stretching sheet in presence of solar radiation. J of Nanofluids 6:735–742CrossRef Mahanthesh B, Gireesha BJ, Manjunatha S, Gorla RSR (2017) Effect of viscous dissipation and joule heating on three-dimensional mixed convection flow of nano fluid over a non-linear stretching sheet in presence of solar radiation. J of Nanofluids 6:735–742CrossRef
17.
Zurück zum Zitat Hayat T, Abbasi FM, Ahmed B (2015) Peristaltic transport of copper-water nanofluid saturating porous medium. Phys E 67:47–53CrossRef Hayat T, Abbasi FM, Ahmed B (2015) Peristaltic transport of copper-water nanofluid saturating porous medium. Phys E 67:47–53CrossRef
18.
Zurück zum Zitat Abbasi FM, Hayat T, Ahmad B, Chen GQ (2014) Slip effects on mixed convective peristaltic transport of copper-water nanofluid in an inclined channel. PLoS One 9(8):e105440CrossRef Abbasi FM, Hayat T, Ahmad B, Chen GQ (2014) Slip effects on mixed convective peristaltic transport of copper-water nanofluid in an inclined channel. PLoS One 9(8):e105440CrossRef
19.
Zurück zum Zitat Shehzad SA, Abbasi FM, Hayat T, Alsaadi F (2014) MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects. PLoS One 9(11):e111417CrossRef Shehzad SA, Abbasi FM, Hayat T, Alsaadi F (2014) MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects. PLoS One 9(11):e111417CrossRef
20.
Zurück zum Zitat Abbasi FM, Hayat T, Ahmad B (2015) Impact of magnetic field on mixed convective peristaltic flow of water based nanofluids with Joule heating. Z Naturforsch 70a:125–132 Abbasi FM, Hayat T, Ahmad B (2015) Impact of magnetic field on mixed convective peristaltic flow of water based nanofluids with Joule heating. Z Naturforsch 70a:125–132
21.
Zurück zum Zitat Abbasi FM, Hayat T, Ahmad B (2015) Peristaltic transport of an aqueous solution of silver nanoparticles with convective heat transfer at the boundaries. Can J Phys 93:1–9CrossRef Abbasi FM, Hayat T, Ahmad B (2015) Peristaltic transport of an aqueous solution of silver nanoparticles with convective heat transfer at the boundaries. Can J Phys 93:1–9CrossRef
22.
Zurück zum Zitat Hayat T, Abbasi FM, Ahmed B, Alsaedi A (2014) MHD mixed convective peristaltic flow with variable viscosity and thermal conductivity. Sains Malaysiana 43:1583–1590 Hayat T, Abbasi FM, Ahmed B, Alsaedi A (2014) MHD mixed convective peristaltic flow with variable viscosity and thermal conductivity. Sains Malaysiana 43:1583–1590
23.
Zurück zum Zitat Nadeem S, Ijaz S (2015) Biomechanical analysis of copper nanoparticles on blood flow through curved artery with stenosis. J Comput Theor Nanosci 12:2322–2231CrossRef Nadeem S, Ijaz S (2015) Biomechanical analysis of copper nanoparticles on blood flow through curved artery with stenosis. J Comput Theor Nanosci 12:2322–2231CrossRef
24.
Zurück zum Zitat Hayat T, Abbasi FM, Alsaedi A (2015) Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects. JMMM 382:104–110CrossRef Hayat T, Abbasi FM, Alsaedi A (2015) Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects. JMMM 382:104–110CrossRef
25.
Zurück zum Zitat Abbasi FM, Ahmad T, Hayat B, Chen GQ (2014) Peristaltic motion of a non-Newtonian nanofluid in an asymmetric channel. Z Naturforsch 69a:451–461 Abbasi FM, Ahmad T, Hayat B, Chen GQ (2014) Peristaltic motion of a non-Newtonian nanofluid in an asymmetric channel. Z Naturforsch 69a:451–461
26.
Zurück zum Zitat Abbasi FM, Hayat T, Ahmad B (2015) Peristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery. J Mol Liq 207:248–255CrossRef Abbasi FM, Hayat T, Ahmad B (2015) Peristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery. J Mol Liq 207:248–255CrossRef
27.
Zurück zum Zitat Lew SH, Fung YC, Lowenstein CB (1971) Peristaltic carrying and mixing of chyme in the small intestine. J Biomech 4:297–315CrossRef Lew SH, Fung YC, Lowenstein CB (1971) Peristaltic carrying and mixing of chyme in the small intestine. J Biomech 4:297–315CrossRef
28.
Zurück zum Zitat Ul Haq R, Khan ZH, Khan WA (2014) Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface. Physica E: Low-dimensional Systems and Nanostructures 63:215–222CrossRef Ul Haq R, Khan ZH, Khan WA (2014) Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface. Physica E: Low-dimensional Systems and Nanostructures 63:215–222CrossRef
29.
Zurück zum Zitat Hayat T, Abbasi FM, Alsaedi A (2017) Low-speed peristaltic transport in a vertical channel subject to the Soret and Dufour effects. J Appl Mech Tech Phys 58(1):63–70CrossRef Hayat T, Abbasi FM, Alsaedi A (2017) Low-speed peristaltic transport in a vertical channel subject to the Soret and Dufour effects. J Appl Mech Tech Phys 58(1):63–70CrossRef
Metadaten
Titel
Flow of carbon nanotubes submerged in water through a channel with wavy walls with convective boundary conditions
verfasst von
T. Hayat
Bilal Ahmed
F. M. Abbasi
A. Alsaedi
Publikationsdatum
07.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 10/2017
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-017-4170-1

Weitere Artikel der Ausgabe 10/2017

Colloid and Polymer Science 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.