Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Computational Mechanics 6/2015

01.06.2015 | Original Paper

Flow past two square cylinders with flexible splitter plates

verfasst von: Mohd Furquan, Sanjay Mittal

Erschienen in: Computational Mechanics | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Fluid–structure interaction of flexible splitter plates attached to two rigid square cylinders, placed side-by-side in a uniform flow is studied. A partitioned approach is used to solve the fluid and structure problems. The results from the implementation are compared with earlier results on standard benchmarks. The Reynolds number based on the edge of the square cylinder is 100. The flexibility of the splitter plates is varied. Initially, the splitter plates undergo small amplitude oscillations that are out of phase relative to each other. The fully developed unsteady response shows in-phase variation. The frequency of the initial out-of-phase vibrations is found to be greater than the natural frequency of the structure. It approaches the natural frequency with increase in stiffness of the structure. The amplitude of the response of the structure is large when the dominant vibration frequency is close to its natural frequency. Lock-in/synchronization is observed for certain values of flexibility considered.
Literatur
1.
Zurück zum Zitat Mittal S, Kumar V, Raghuvanshi A (1997) Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Int J Numer Methods Fluids 25:1315–1344 MATHCrossRef Mittal S, Kumar V, Raghuvanshi A (1997) Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Int J Numer Methods Fluids 25:1315–1344 MATHCrossRef
2.
Zurück zum Zitat Zdravkovich MM (1977) Review of flow interference between two circular cylinders in various arrangements. J Fluids Eng Trans ASME 99:618–633 CrossRef Zdravkovich MM (1977) Review of flow interference between two circular cylinders in various arrangements. J Fluids Eng Trans ASME 99:618–633 CrossRef
3.
Zurück zum Zitat Kim HJ, Durbin PA (1988) Investigation of the flow between a pair of circular cylinders in the flopping regime. J Fluid Mech 196:431–448 CrossRef Kim HJ, Durbin PA (1988) Investigation of the flow between a pair of circular cylinders in the flopping regime. J Fluid Mech 196:431–448 CrossRef
4.
Zurück zum Zitat Wong PTY, Ko NWM, Chiu AYW (1995) Flow characteristics around two parallel adjacent square cylinders of different sizes. J Wind Eng Ind Aerodyn 54–55:263–275 CrossRef Wong PTY, Ko NWM, Chiu AYW (1995) Flow characteristics around two parallel adjacent square cylinders of different sizes. J Wind Eng Ind Aerodyn 54–55:263–275 CrossRef
5.
Zurück zum Zitat Suqin C (2000) Numerical computation of the flow around two square cylinders arranged side-by-side. Appl Math Mech 21:147–164 MATHCrossRef Suqin C (2000) Numerical computation of the flow around two square cylinders arranged side-by-side. Appl Math Mech 21:147–164 MATHCrossRef
6.
Zurück zum Zitat Kwon K, Choi H (1996) Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys Fluids 8:479–486 MATHCrossRef Kwon K, Choi H (1996) Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys Fluids 8:479–486 MATHCrossRef
7.
Zurück zum Zitat Mansingh V, Oosthuizen PH (1990) Effects of splitter plates on the wake flow behind a bluff body. AIAA J 28:778–783 CrossRef Mansingh V, Oosthuizen PH (1990) Effects of splitter plates on the wake flow behind a bluff body. AIAA J 28:778–783 CrossRef
8.
Zurück zum Zitat Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332 MATHCrossRef Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332 MATHCrossRef
9.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, Hoboken CrossRef Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, Hoboken CrossRef
10.
Zurück zum Zitat Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351 MATHMathSciNetCrossRef Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351 MATHMathSciNetCrossRef
11.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371 MATHMathSciNetCrossRef Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371 MATHMathSciNetCrossRef
12.
Zurück zum Zitat Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575 Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575
13.
Zurück zum Zitat Mittal S (2000) On the performance of high aspect-ratio elements for incompressible flows. Comput Methods Appl Mech Eng 188:269–287 MATHCrossRef Mittal S (2000) On the performance of high aspect-ratio elements for incompressible flows. Comput Methods Appl Mech Eng 188:269–287 MATHCrossRef
14.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259 MATHMathSciNetCrossRef Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259 MATHMathSciNetCrossRef
15.
Zurück zum Zitat Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242 MATHCrossRef Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242 MATHCrossRef
16.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with stabilized finite element methods: space-time formulations, iterative strategies and massively parallel implementations, New Methods in Transient Analysis, AMD Vol. 143, ASME, 7–24 Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with stabilized finite element methods: space-time formulations, iterative strategies and massively parallel implementations, New Methods in Transient Analysis, AMD Vol. 143, ASME, 7–24
17.
Zurück zum Zitat Tezduyar TE, Aliabadi SK, Behr M, Johnson AA, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26:27–36 CrossRef Tezduyar TE, Aliabadi SK, Behr M, Johnson AA, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26:27–36 CrossRef
18.
Zurück zum Zitat Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94 MATHCrossRef Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94 MATHCrossRef
20.
Zurück zum Zitat Dhondt G (2004) The finite element method for three-dimensional thermomechanical applications. Wiley, Hoboken MATHCrossRef Dhondt G (2004) The finite element method for three-dimensional thermomechanical applications. Wiley, Hoboken MATHCrossRef
21.
Zurück zum Zitat Harari I, Hughes TJR (1992) What are c and h?: inequalities for the analysis and design of finite element methods. Comput Methods Appl Mech Eng 97:157–192 MATHMathSciNetCrossRef Harari I, Hughes TJR (1992) What are c and h?: inequalities for the analysis and design of finite element methods. Comput Methods Appl Mech Eng 97:157–192 MATHMathSciNetCrossRef
22.
Zurück zum Zitat Turek S, Hron J (2006) Proposal for numerical benchmarks for fluid-structure interaction between an elastic object and laminar incompressible flow. In: Fluid–structure interaction. Modelling, simulation and optimization, Lecture notes in computational science and engineering Turek S, Hron J (2006) Proposal for numerical benchmarks for fluid-structure interaction between an elastic object and laminar incompressible flow. In: Fluid–structure interaction. Modelling, simulation and optimization, Lecture notes in computational science and engineering
23.
Zurück zum Zitat Wall WA, Ramm E (1998) Fluidstructure interaction based upon a stabilized (ALE) finite element method. In: Idelsohn SR, Onate E (eds) 4th World congress on computational mechanics. CIMNE, Barcelona, Spain, Computational mechanics—New trends and applications, Buenos Aires, Argentina Wall WA, Ramm E (1998) Fluidstructure interaction based upon a stabilized (ALE) finite element method. In: Idelsohn SR, Onate E (eds) 4th World congress on computational mechanics. CIMNE, Barcelona, Spain, Computational mechanics—New trends and applications, Buenos Aires, Argentina
24.
Zurück zum Zitat Hubner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid–structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193:2087–2104 CrossRef Hubner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid–structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193:2087–2104 CrossRef
25.
Zurück zum Zitat Dettmer W, Peric D (2006) A computational framework for fluidstructure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195:5754–5779 MATHCrossRef Dettmer W, Peric D (2006) A computational framework for fluidstructure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195:5754–5779 MATHCrossRef
26.
Zurück zum Zitat Lee J, You D (2013) Study of vortex-shedding-induced vibration of a flexible splitter plate behind a cylinder. Phys Fluids 25(110811):1–17 MATH Lee J, You D (2013) Study of vortex-shedding-induced vibration of a flexible splitter plate behind a cylinder. Phys Fluids 25(110811):1–17 MATH
27.
Zurück zum Zitat Khalak A, Williamson CHK (1999) Motions, force and mode transitions in vortex induced vibrations at low mass damping. J Fluids Struct 13:813–851 CrossRef Khalak A, Williamson CHK (1999) Motions, force and mode transitions in vortex induced vibrations at low mass damping. J Fluids Struct 13:813–851 CrossRef
28.
Zurück zum Zitat Thomson WT, Dahleh MD (1997) Theory of vibration with applications, 5th edn. Prentice Hall, Upper Saddle River Thomson WT, Dahleh MD (1997) Theory of vibration with applications, 5th edn. Prentice Hall, Upper Saddle River
Metadaten
Titel
Flow past two square cylinders with flexible splitter plates
verfasst von
Mohd Furquan
Sanjay Mittal
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1110-5

Weitere Artikel der Ausgabe 6/2015

Computational Mechanics 6/2015 Zur Ausgabe