Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 4/2011

01.12.2011 | Original Article

Fluid catalytic cracking of biomass pyrolysis vapors

verfasst von: Ofei Daku Mante, Foster A. Agblevor, Ron McClung

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 4/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Catalytic cracking of pyrolysis oils/vapors offers the opportunity of producing bio-oils which can potentially be coprocessed with petroleum feedstocks in today’s oil refinery to produce transportation fuel and chemicals. Catalyst properties and process conditions are critical in producing and maximizing desired product. In our studies, catalyst matrix (kaolin) and two commercial fluid catalytic cracking (FCC) catalysts, FCC-H and FCC-L, with different Y-zeolite contents were investigated. The catalytic cracking of hybrid poplar wood was conducted in a 50-mm bench-scale bubbling fluidized-bed pyrolysis reactor at 465°C with a weight hourly space velocity of 1.5 h−1. The results showed that the yields and quality of the bio-oils was a function of the Y-zeolite content of the catalyst. The char/coke yield was highest for the higher Y-zeolite catalyst. The organic liquid yields decreased inversely with increase in zeolite content of the catalyst whereas the water and gas yields increased. Analysis of the oils by both Fourier-transform infrared and 13C-nuclear magnetic resonance indicated that the catalyst with higher zeolite content (FCC-H) was efficient in the removal of compounds like levoglucosan, carboxylic acids and the conversion of methoxylated phenols to substituted phenols and benzenediols. The cracking of pyrolysis products by kaolin suggests that the activity of the FCC catalyst on biomass pyrolysis vapors can be attributed to both Y-zeolite and matrix. The FCC-H catalyst produced much more improved oil. The oil was low in oxygen (22.67 wt.%), high in energy (29.79 MJ/kg) and relatively stable over a 12-month storage period.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adam J, Antonakou E, Lappas A, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Øye G (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Micropor Mesopor Mat 96:93–101CrossRef Adam J, Antonakou E, Lappas A, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Øye G (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Micropor Mesopor Mat 96:93–101CrossRef
2.
Zurück zum Zitat Adam J, Blazsó M, Mészáros E, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Grønli M, Øye G (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84:1494–1502 Adam J, Blazsó M, Mészáros E, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Grønli M, Øye G (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84:1494–1502
3.
Zurück zum Zitat Adjaye JD, Bakhshi NN (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: comparative catalyst performance and reaction pathways. Fuel Process Tech 45:185–202CrossRef Adjaye JD, Bakhshi NN (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: comparative catalyst performance and reaction pathways. Fuel Process Tech 45:185–202CrossRef
4.
Zurück zum Zitat Agblevor FA, Beis S, Kim SS, Tarrant R, Mante NO (2010) Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Manag 30:298–307CrossRef Agblevor FA, Beis S, Kim SS, Tarrant R, Mante NO (2010) Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Manag 30:298–307CrossRef
5.
Zurück zum Zitat Agblevor FA, Beis S, Mante O, Abdoulmoumine N (2010) Fractional catalytic pyrolysis of hybrid poplar wood. Ind Eng Chem Res 49:3533–3538CrossRef Agblevor FA, Beis S, Mante O, Abdoulmoumine N (2010) Fractional catalytic pyrolysis of hybrid poplar wood. Ind Eng Chem Res 49:3533–3538CrossRef
6.
Zurück zum Zitat Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87:2493–2501CrossRef Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87:2493–2501CrossRef
7.
Zurück zum Zitat Al-Khattaf S (2002) The influence of alumina on the performance of FCC catalysts during hydrotreated VGO catalytic cracking. Energ Fuel 17:62–68CrossRef Al-Khattaf S (2002) The influence of alumina on the performance of FCC catalysts during hydrotreated VGO catalytic cracking. Energ Fuel 17:62–68CrossRef
8.
Zurück zum Zitat Al-Khattaf S (2002) The influence of Y-zeolite unit cell size on the performance of FCC catalysts during gas oil catalytic cracking. Appl Catal Gen 231:293–306CrossRef Al-Khattaf S (2002) The influence of Y-zeolite unit cell size on the performance of FCC catalysts during gas oil catalytic cracking. Appl Catal Gen 231:293–306CrossRef
9.
Zurück zum Zitat Avidan AA (1993) Origin, development and scope of FCC catalysis. In: Studies in surface science and catalysis. Elsevier, pp 1–39 Avidan AA (1993) Origin, development and scope of FCC catalysis. In: Studies in surface science and catalysis. Elsevier, pp 1–39
10.
Zurück zum Zitat Bridgwater AV (2004) Biomass fast pyrolysis. Therm Sci 8:49 Bridgwater AV (2004) Biomass fast pyrolysis. Therm Sci 8:49
11.
Zurück zum Zitat Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493CrossRef Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493CrossRef
12.
Zurück zum Zitat Carlson T, Tompsett G, Conner W, Huber G (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52:241–252CrossRef Carlson T, Tompsett G, Conner W, Huber G (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52:241–252CrossRef
13.
Zurück zum Zitat Carlson TR, Jae J, Lin Y-C, Tompsett GA, Huber GW (2010) Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. J Catal 270:110–124CrossRef Carlson TR, Jae J, Lin Y-C, Tompsett GA, Huber GW (2010) Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. J Catal 270:110–124CrossRef
14.
Zurück zum Zitat Corma A, Huber GW, Sauvanaud L, O'connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247:307–327CrossRef Corma A, Huber GW, Sauvanaud L, O'connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247:307–327CrossRef
15.
Zurück zum Zitat Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energ Fuel 18:590–598CrossRef Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energ Fuel 18:590–598CrossRef
16.
Zurück zum Zitat Czernik S, Johnson DK, Black S (1994) Stability of wood fast pyrolysis oil. Biomass Bioenerg 7:187–192CrossRef Czernik S, Johnson DK, Black S (1994) Stability of wood fast pyrolysis oil. Biomass Bioenerg 7:187–192CrossRef
17.
Zurück zum Zitat De La Puente G, Sedran U (1996) Conversion of methylcyclopentane on rare earth exchanged Y zeolite FCC catalysts. Appl Catal Gen 144:147–158CrossRef De La Puente G, Sedran U (1996) Conversion of methylcyclopentane on rare earth exchanged Y zeolite FCC catalysts. Appl Catal Gen 144:147–158CrossRef
18.
Zurück zum Zitat Diebold JP (1999) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. In: Other information: PBD: 27 Jan 1999 Diebold JP (1999) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. In: Other information: PBD: 27 Jan 1999
19.
Zurück zum Zitat Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energ Fuel 11:1081–1091CrossRef Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energ Fuel 11:1081–1091CrossRef
20.
Zurück zum Zitat Dight LB, Leskowicz MA, Bogert DC (1990) High zeolite content FCC catalysts and method for making them. In: ENGELHARD CORP (US) Dight LB, Leskowicz MA, Bogert DC (1990) High zeolite content FCC catalysts and method for making them. In: ENGELHARD CORP (US)
21.
Zurück zum Zitat Faix O, Fortmann I, Bremer J, Meier D (1991) Thermal degradation products of wood. Eur J Wood Wood Prod 49:213–219CrossRef Faix O, Fortmann I, Bremer J, Meier D (1991) Thermal degradation products of wood. Eur J Wood Wood Prod 49:213–219CrossRef
22.
Zurück zum Zitat Fogassy G, Thegarid N, Toussaint G, Van Veen AC, Schuurman Y, Mirodatos C (2010) Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl Catal B Environ 96:476–485CrossRef Fogassy G, Thegarid N, Toussaint G, Van Veen AC, Schuurman Y, Mirodatos C (2010) Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl Catal B Environ 96:476–485CrossRef
23.
Zurück zum Zitat French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Tech 91:25–32CrossRef French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Tech 91:25–32CrossRef
24.
Zurück zum Zitat Graça I, Ribeiro FR, Cerqueira HS, Lam YL, De Almeida MBB (2009) Catalytic cracking of mixtures of model bio-oil compounds and gasoil. Appl Catal B Environ 90:556–563CrossRef Graça I, Ribeiro FR, Cerqueira HS, Lam YL, De Almeida MBB (2009) Catalytic cracking of mixtures of model bio-oil compounds and gasoil. Appl Catal B Environ 90:556–563CrossRef
25.
Zurück zum Zitat Hosseinpour N, Mortazavi Y, Bazyari A, Khodadadi AA (2009) Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation. Fuel Process Tech 90:171–179CrossRef Hosseinpour N, Mortazavi Y, Bazyari A, Khodadadi AA (2009) Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation. Fuel Process Tech 90:171–179CrossRef
26.
Zurück zum Zitat Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201CrossRef Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201CrossRef
27.
Zurück zum Zitat Jacobs PA, Leeman HE, Uytterhoeven JB (1974) Active sites in zeolites: I. Cumene cracking activity of NH4Y zeolites after different reactor pretreatments. J Catal 33:17–30CrossRef Jacobs PA, Leeman HE, Uytterhoeven JB (1974) Active sites in zeolites: I. Cumene cracking activity of NH4Y zeolites after different reactor pretreatments. J Catal 33:17–30CrossRef
28.
Zurück zum Zitat Klaptsov VF, Nefedov BK, Maslova AA, Khlebnikova MA (1985) Influence of zeolite content and nature of matrix on properties of cracking catalysts. Chem Tech Fuels Oil 21:607–609CrossRef Klaptsov VF, Nefedov BK, Maslova AA, Khlebnikova MA (1985) Influence of zeolite content and nature of matrix on properties of cracking catalysts. Chem Tech Fuels Oil 21:607–609CrossRef
29.
Zurück zum Zitat Lappas AA, Bezergianni S, Vasalos IA (2009) Production of biofuels via co-processing in conventional refining processes. Catal Today 145:55–62CrossRef Lappas AA, Bezergianni S, Vasalos IA (2009) Production of biofuels via co-processing in conventional refining processes. Catal Today 145:55–62CrossRef
30.
Zurück zum Zitat Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel 81:2087–2095CrossRef Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel 81:2087–2095CrossRef
31.
Zurück zum Zitat Lee K-H, Jeon S-G, Kim K-H, Noh N-S, Shin D-H, Park J, Seo Y, Yee J-J, Kim G-T (2003) Thermal and catalytic degradation of waste high-density polyethylene (HDPE) using spent FCC catalyst. Kor J Chem Eng 20:693–697CrossRef Lee K-H, Jeon S-G, Kim K-H, Noh N-S, Shin D-H, Park J, Seo Y, Yee J-J, Kim G-T (2003) Thermal and catalytic degradation of waste high-density polyethylene (HDPE) using spent FCC catalyst. Kor J Chem Eng 20:693–697CrossRef
32.
Zurück zum Zitat Lee K-H, Shin D-H (2006) A comparative study of liquid product on non-catalytic and catalytic degradation of waste plastics using spent FCC catalyst. Kor J Chem Eng 23:209–215CrossRef Lee K-H, Shin D-H (2006) A comparative study of liquid product on non-catalytic and catalytic degradation of waste plastics using spent FCC catalyst. Kor J Chem Eng 23:209–215CrossRef
33.
Zurück zum Zitat Li H, Shen B, Kabalu JC, Nchare M (2009) Enhancing the production of biofuels from cottonseed oil by fixed-fluidized bed catalytic cracking. Renew Energ 34:1033–1039CrossRef Li H, Shen B, Kabalu JC, Nchare M (2009) Enhancing the production of biofuels from cottonseed oil by fixed-fluidized bed catalytic cracking. Renew Energ 34:1033–1039CrossRef
34.
Zurück zum Zitat Mante OD, Agblevor FA (2010) Influence of pine wood shavings on the pyrolysis of poultry litter. Waste Manag 30:2537–2547CrossRef Mante OD, Agblevor FA (2010) Influence of pine wood shavings on the pyrolysis of poultry litter. Waste Manag 30:2537–2547CrossRef
35.
Zurück zum Zitat Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuel 20:848–889CrossRef Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuel 20:848–889CrossRef
36.
Zurück zum Zitat Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils-state of the art for the end users. Energ Fuel 13:914–921CrossRef Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils-state of the art for the end users. Energ Fuel 13:914–921CrossRef
37.
Zurück zum Zitat Pütün E, Uzun BB, Pütün AE (2009) Rapid pyrolysis of olive residue. 2. Effect of catalytic upgrading of pyrolysis vapors in a two-stage fixed-bed reactor. Energ Fuel 23:2248–2258CrossRef Pütün E, Uzun BB, Pütün AE (2009) Rapid pyrolysis of olive residue. 2. Effect of catalytic upgrading of pyrolysis vapors in a two-stage fixed-bed reactor. Energ Fuel 23:2248–2258CrossRef
38.
Zurück zum Zitat Samolada MC, Baldauf W, Vasalos IA (1998) Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel 77:1667–1675CrossRef Samolada MC, Baldauf W, Vasalos IA (1998) Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel 77:1667–1675CrossRef
39.
Zurück zum Zitat Samolada MC, Papafotica A, Vasalos IA (2000) Catalyst evaluation for catalytic biomass pyrolysis. Energ Fuel 14:1161–1167CrossRef Samolada MC, Papafotica A, Vasalos IA (2000) Catalyst evaluation for catalytic biomass pyrolysis. Energ Fuel 14:1161–1167CrossRef
40.
Zurück zum Zitat Scherzer J (1993) Correlation between catalyst formulation and catalytic properties. In: Studies in surface science and catalysis. Elsevier, pp 145–182 Scherzer J (1993) Correlation between catalyst formulation and catalytic properties. In: Studies in surface science and catalysis. Elsevier, pp 145–182
41.
Zurück zum Zitat Scherzer J, Bass JL (1973) Infrared spectra of ultrastable zeolites derived from type Y zeolites. J Catal 28:101–115CrossRef Scherzer J, Bass JL (1973) Infrared spectra of ultrastable zeolites derived from type Y zeolites. J Catal 28:101–115CrossRef
42.
Zurück zum Zitat Tonetto G, Atias J, De Lasa H (2004) FCC catalysts with different zeolite crystallite sizes: acidity, structural properties and reactivity. Appl Catal Gen 270:9–25CrossRef Tonetto G, Atias J, De Lasa H (2004) FCC catalysts with different zeolite crystallite sizes: acidity, structural properties and reactivity. Appl Catal Gen 270:9–25CrossRef
43.
Zurück zum Zitat Tonetto GM, Ferreira ML, Atias JA, De Lasa HI (2006) Effect of steaming treatment in the structure and reactivity of FCC catalysts. AICHE J 52:754–768CrossRef Tonetto GM, Ferreira ML, Atias JA, De Lasa HI (2006) Effect of steaming treatment in the structure and reactivity of FCC catalysts. AICHE J 52:754–768CrossRef
44.
Zurück zum Zitat Ward JW (1968) The nature of active sites on zeolites: III. The alkali and alkaline earth ion-exchanged forms. J Catal 10:34–46CrossRef Ward JW (1968) The nature of active sites on zeolites: III. The alkali and alkaline earth ion-exchanged forms. J Catal 10:34–46CrossRef
45.
Zurück zum Zitat Williams PT, Horne PA (1994) Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading. Biomass Bioenerg 7:223–236CrossRef Williams PT, Horne PA (1994) Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading. Biomass Bioenerg 7:223–236CrossRef
46.
Zurück zum Zitat Williams PT, Horne PA (1995) The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J Anal Appl Pyrol 31:39–61CrossRef Williams PT, Horne PA (1995) The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J Anal Appl Pyrol 31:39–61CrossRef
47.
Zurück zum Zitat Woltermann GM, Magee JS, Griffith SD (1993) Commercial preparation and characterization of FCC catalysts. In: Studies in surface science and catalysis. Elsevier, pp 105–144 Woltermann GM, Magee JS, Griffith SD (1993) Commercial preparation and characterization of FCC catalysts. In: Studies in surface science and catalysis. Elsevier, pp 105–144
48.
Zurück zum Zitat Zhang H, Xiao R, Wang D, Zhong Z, Song M, Pan Q, He G (2009) Catalytic fast pyrolysis of biomass in a fluidized bed with fresh and spent Fluidized Catalytic Cracking (FCC) catalysts. Energ Fuel 23:6199–6206CrossRef Zhang H, Xiao R, Wang D, Zhong Z, Song M, Pan Q, He G (2009) Catalytic fast pyrolysis of biomass in a fluidized bed with fresh and spent Fluidized Catalytic Cracking (FCC) catalysts. Energ Fuel 23:6199–6206CrossRef
Metadaten
Titel
Fluid catalytic cracking of biomass pyrolysis vapors
verfasst von
Ofei Daku Mante
Foster A. Agblevor
Ron McClung
Publikationsdatum
01.12.2011
Verlag
Springer-Verlag
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 4/2011
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-011-0019-x

Weitere Artikel der Ausgabe 4/2011

Biomass Conversion and Biorefinery 4/2011 Zur Ausgabe