Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 8/2018

08.01.2018 | Original Article

Fluid mechanics of Windkessel effect

verfasst von: C. C. Mei, J. Zhang, H. X. Jing

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We describe a mechanistic model of Windkessel phenomenon based on the linear dynamics of fluid-structure interactions. The phenomenon has its origin in an old-fashioned fire-fighting equipment where an air chamber serves to transform the intermittent influx from a pump to a more steady stream out of the hose. A similar mechanism exists in the cardiovascular system where blood injected intermittantly from the heart becomes rather smooth after passing through an elastic aorta. In existing haeodynamics literature, this mechanism is explained on the basis of electric circuit analogy with empirical impedances. We present a mechanistic theory based on the principles of fluid/structure interactions. Using a simple one-dimensional model, wave motion in the elastic aorta is coupled to the viscous flow in the rigid peripheral artery. Explicit formulas are derived that exhibit the role of material properties such as the blood density, viscosity, wall elasticity, and radii and lengths of the vessels. The current two-element model in haemodynamics is shown to be the limit of short aorta and low injection frequency and the impedance coefficients are derived theoretically. Numerical results for different aorta lengths and radii are discussed to demonstrate their effects on the time variations of blood pressure, wall shear stress, and discharge.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Frank O (1899) Grundform des arterielen pulses. Zeitschrift Biologie 37:483–526 Frank O (1899) Grundform des arterielen pulses. Zeitschrift Biologie 37:483–526
2.
3.
Zurück zum Zitat Khir AW, Zambanini A, Parker KH (2004) Local and regional wave speed in the aorta: effects of arterial occlusion. Med Eng Phys 26(2004):23–29CrossRefPubMed Khir AW, Zambanini A, Parker KH (2004) Local and regional wave speed in the aorta: effects of arterial occlusion. Med Eng Phys 26(2004):23–29CrossRefPubMed
4.
Zurück zum Zitat Khir A, Parker KH (2005) Wave intensity in the ascending aorta: effects of arterial occlusion. J Biomech 38:647–655CrossRefPubMed Khir A, Parker KH (2005) Wave intensity in the ascending aorta: effects of arterial occlusion. J Biomech 38:647–655CrossRefPubMed
5.
Zurück zum Zitat Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood J 88(5):1525–1541 Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood J 88(5):1525–1541
6.
Zurück zum Zitat McDonald DA (1960) Blood flow in arteries. Williams & Wilkens, Baltimore McDonald DA (1960) Blood flow in arteries. Williams & Wilkens, Baltimore
7.
Zurück zum Zitat Mynard JP, Smolick JJ (2014) Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics. Am J Physiol Heart Circ Physiol 307:H307–H318CrossRefPubMed Mynard JP, Smolick JJ (2014) Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics. Am J Physiol Heart Circ Physiol 307:H307–H318CrossRefPubMed
8.
Zurück zum Zitat Nichols W, O’Rouke M, Vlachopoulos Ch (2011) Mcdonald’s blood flow in arteries: 6th Edition, theoretical, experimental and clinical principles. CRC Press, Boca Raton Nichols W, O’Rouke M, Vlachopoulos Ch (2011) Mcdonald’s blood flow in arteries: 6th Edition, theoretical, experimental and clinical principles. CRC Press, Boca Raton
9.
Zurück zum Zitat Olsen JH, Shapiro AH (1967) Large-amplitude unsteady flow in liquid-filled elastic tubes. J Fluid Mech 29:513–538CrossRef Olsen JH, Shapiro AH (1967) Large-amplitude unsteady flow in liquid-filled elastic tubes. J Fluid Mech 29:513–538CrossRef
11.
Zurück zum Zitat Parker KH (2009) An introduction to wave intensity analysis. Med Biol Eng Comput 47:175–288CrossRefPubMed Parker KH (2009) An introduction to wave intensity analysis. Med Biol Eng Comput 47:175–288CrossRefPubMed
12.
Zurück zum Zitat Pedley TJ (1980) The fluid mechanics of large blood vessels. Cambridge University Press, CambridgeCrossRef Pedley TJ (1980) The fluid mechanics of large blood vessels. Cambridge University Press, CambridgeCrossRef
14.
Zurück zum Zitat Sadeghi MR, Shirani E, Tafazzoli-Shadpour M, Samaee M (2011) The effects of stenosis severity on the hemodynamic parameters-assessment of the correlation between stress phase angle and wall shear stress. Journal Biomech 44(15):2614–2626CrossRef Sadeghi MR, Shirani E, Tafazzoli-Shadpour M, Samaee M (2011) The effects of stenosis severity on the hemodynamic parameters-assessment of the correlation between stress phase angle and wall shear stress. Journal Biomech 44(15):2614–2626CrossRef
15.
Zurück zum Zitat Samaee M, Tafazzoli-Shadpour M, Alavi H (2017) Coupling of shear-circumferential stress pulses investigation through stress phase angle in FSI models of stenotic artery using experimental data. Med Biol Eng Comput 55:1147–1162CrossRefPubMed Samaee M, Tafazzoli-Shadpour M, Alavi H (2017) Coupling of shear-circumferential stress pulses investigation through stress phase angle in FSI models of stenotic artery using experimental data. Med Biol Eng Comput 55:1147–1162CrossRefPubMed
16.
Zurück zum Zitat Stergiopulos N, Meister JJ, Westerhop N (1999) Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. Ann Biomed Eng 22:393–397 Stergiopulos N, Meister JJ, Westerhop N (1999) Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. Ann Biomed Eng 22:393–397
17.
Zurück zum Zitat Tyberg JV, Shrive NG, Bouwmeester JC, Parker KH, Wang J Jr (2010) The reservoir-wave paradigm: potential implications for hypertension. Curr Hypertens Rev 4(3):203–213CrossRef Tyberg JV, Shrive NG, Bouwmeester JC, Parker KH, Wang J Jr (2010) The reservoir-wave paradigm: potential implications for hypertension. Curr Hypertens Rev 4(3):203–213CrossRef
18.
Zurück zum Zitat Tyberg JV, Bouwmeester JC, Parker KH, Shrive NG, Wang J Jr (2014) The case for the reservoir wave approach. Int J Cardiol 172:299–306CrossRefPubMed Tyberg JV, Bouwmeester JC, Parker KH, Shrive NG, Wang J Jr (2014) The case for the reservoir wave approach. Int J Cardiol 172:299–306CrossRefPubMed
19.
Zurück zum Zitat vandenBos GC, Westerhof N, Elzinga G, Sipkema P (1976) Reflection in the systemic arterial system: effects of aortic and carotid occlusion. Cardiovasc Res 10:565–573CrossRef vandenBos GC, Westerhof N, Elzinga G, Sipkema P (1976) Reflection in the systemic arterial system: effects of aortic and carotid occlusion. Cardiovasc Res 10:565–573CrossRef
20.
Zurück zum Zitat vandeVosse FN, Sterogiulos N (2011) Pulse wave propagation in the arterial tree. Annual Rev Fluid Mech 41:467–499CrossRef vandeVosse FN, Sterogiulos N (2011) Pulse wave propagation in the arterial tree. Annual Rev Fluid Mech 41:467–499CrossRef
21.
Zurück zum Zitat Westerhof N, Sipkema P, van ven Bos GC, Elzinga G (1972) Forward and backward waves in the arterial system. Cardiovas Res 6:648–656CrossRef Westerhof N, Sipkema P, van ven Bos GC, Elzinga G (1972) Forward and backward waves in the arterial system. Cardiovas Res 6:648–656CrossRef
22.
Zurück zum Zitat Westerhof N, Lankhaar J-W, Westerhopf BE (2009) The arterial Windkessel. Med Biolo Eng Comp 47:131–141CrossRef Westerhof N, Lankhaar J-W, Westerhopf BE (2009) The arterial Windkessel. Med Biolo Eng Comp 47:131–141CrossRef
23.
Zurück zum Zitat Wang J Jr, O’Brien AB, Shrive NG, Parker KH, Tyberg JV (2003) Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol 284:H1358–H1368CrossRefPubMed Wang J Jr, O’Brien AB, Shrive NG, Parker KH, Tyberg JV (2003) Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol 284:H1358–H1368CrossRefPubMed
24.
Zurück zum Zitat Wang J Jr, Flewitt JA, Shrive NG, Parker KH, Tyberg JV (2006) Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance. Am J Physiol Heart Circ Physiol 284:H154–H162CrossRef Wang J Jr, Flewitt JA, Shrive NG, Parker KH, Tyberg JV (2006) Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance. Am J Physiol Heart Circ Physiol 284:H154–H162CrossRef
25.
Zurück zum Zitat Womersley JR (1955) Oscillatory motion of a viscous fluid in a thin-walled elastic tube—the linear approximation for long waves. Philo Mag 46:199–221CrossRef Womersley JR (1955) Oscillatory motion of a viscous fluid in a thin-walled elastic tube—the linear approximation for long waves. Philo Mag 46:199–221CrossRef
Metadaten
Titel
Fluid mechanics of Windkessel effect
verfasst von
C. C. Mei
J. Zhang
H. X. Jing
Publikationsdatum
08.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 8/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1775-y

Weitere Artikel der Ausgabe 8/2018

Medical & Biological Engineering & Computing 8/2018 Zur Ausgabe