Skip to main content

2014 | OriginalPaper | Buchkapitel

7. Fluid Pressure and Failure Modes of Sandstones

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The existence of the fractures and fluids in the rocks, together with the associated pore pressures can cause significant changes of rock properties. The role of fluids, their interaction with microstructure, and their influence on the internal stresses and pressures in a rock are all important when considering partially molten rocks, as well as when understanding porous rocks (e.g. sediments) in reservoir settings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rubin, A. M. (1993). Tensile fracture of rock at high confining pressure: Implications for dike propagation. Journal of Geophysical Research, 98(B9), 15919–15935.CrossRef Rubin, A. M. (1993). Tensile fracture of rock at high confining pressure: Implications for dike propagation. Journal of Geophysical Research, 98(B9), 15919–15935.CrossRef
2.
Zurück zum Zitat White, R. S., Drew, J., Martens, H. R., Key, J., Soosalu, H., & Jakobsdóttir, S. S. (2011). Dynamics of dyke intrusion in the mid-crust of iceland. Earth and Planetary Science Letters, 304(3–4), 300–312.CrossRef White, R. S., Drew, J., Martens, H. R., Key, J., Soosalu, H., & Jakobsdóttir, S. S. (2011). Dynamics of dyke intrusion in the mid-crust of iceland. Earth and Planetary Science Letters, 304(3–4), 300–312.CrossRef
3.
Zurück zum Zitat Mukerji, T., Dutta, N., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part I: The rock physics basis. Canadian Society of Exploration Geophysicists Recorder, 27, 36–57. Mukerji, T., Dutta, N., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part I: The rock physics basis. Canadian Society of Exploration Geophysicists Recorder, 27, 36–57.
4.
Zurück zum Zitat Dutta, N., Mukerji, T., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part II: Field applications. Canadian Society of Exploration Geophysicists Recorder, 27 59–73. Dutta, N., Mukerji, T., Prasad, M., & Dvorkin, J. (2002). Seismic detection and estimation of overpressures part II: Field applications. Canadian Society of Exploration Geophysicists Recorder, 27 59–73.
5.
Zurück zum Zitat Rubin, A. M. (1995). Propagation of magma-filled cracks. Annual Review Of Earth And Planetary Sciences, 23, 287–336.CrossRef Rubin, A. M. (1995). Propagation of magma-filled cracks. Annual Review Of Earth And Planetary Sciences, 23, 287–336.CrossRef
6.
Zurück zum Zitat Xu, X., Hofmann, R., Batzle, M., & Tshering, T. (2006). Influence of pore pressure on velocity in low-porosity sandstone: Implications for time-lapse feasibility and pore-pressure study. Geophysical Prospecting, 54(5), 565–573.CrossRef Xu, X., Hofmann, R., Batzle, M., & Tshering, T. (2006). Influence of pore pressure on velocity in low-porosity sandstone: Implications for time-lapse feasibility and pore-pressure study. Geophysical Prospecting, 54(5), 565–573.CrossRef
7.
Zurück zum Zitat Horii, H., & Nemat-Nasser, S. (1986). Brittle failure in compression: Splitting, faulting and brittle-ductile transition. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 319(1549), 337–374. Horii, H., & Nemat-Nasser, S. (1986). Brittle failure in compression: Splitting, faulting and brittle-ductile transition. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 319(1549), 337–374.
8.
Zurück zum Zitat Baud, P., Zhu, W., & Wong, T. -f. (2000). Failure mode and weakening effect of water on sandstone. Journal of Geophysical Research, 105(B7), 16371–16389. Baud, P., Zhu, W., & Wong, T. -f. (2000). Failure mode and weakening effect of water on sandstone. Journal of Geophysical Research, 105(B7), 16371–16389.
9.
Zurück zum Zitat Zhang, J., Wong, T. -F., & Davis, D. M. (1990). Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research, 95(B1), 341–352. Zhang, J., Wong, T. -F., & Davis, D. M. (1990). Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research, 95(B1), 341–352.
10.
Zurück zum Zitat Tompkins, M. J., & Christensen, N. I. (2001). Ultrasonic p- and s-wave attenuation in oceanic basalt. Geophysical Journal International, 145(1), 172–186.CrossRef Tompkins, M. J., & Christensen, N. I. (2001). Ultrasonic p- and s-wave attenuation in oceanic basalt. Geophysical Journal International, 145(1), 172–186.CrossRef
11.
Zurück zum Zitat King, M. S. (1966). Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants. Geophysics, 31(1), 50–73.CrossRef King, M. S. (1966). Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants. Geophysics, 31(1), 50–73.CrossRef
12.
Zurück zum Zitat Gist, G. A. (1994). Fluid effects on velocity and attenuation in sandstones. The Journal of the Acoustical Society of America, 96(2), 1158–1173.CrossRef Gist, G. A. (1994). Fluid effects on velocity and attenuation in sandstones. The Journal of the Acoustical Society of America, 96(2), 1158–1173.CrossRef
13.
Zurück zum Zitat Waza, T., Kurita, K., & Mizutani, H. (1980). The effect of water on the subcritical crack growth in silicate rocks. Tectonophysics, 67(1–2), 25–34.CrossRef Waza, T., Kurita, K., & Mizutani, H. (1980). The effect of water on the subcritical crack growth in silicate rocks. Tectonophysics, 67(1–2), 25–34.CrossRef
14.
Zurück zum Zitat Terzaghi, K. (1923). Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsberichte Der Mathematisch-Naturwissenschaftlichen Classe Der Kaiserlichen Akademie, 132, 105–124. Terzaghi, K. (1923). Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsberichte Der Mathematisch-Naturwissenschaftlichen Classe Der Kaiserlichen Akademie, 132, 105–124.
15.
Zurück zum Zitat Biot, M., & Willis, D. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601. Biot, M., & Willis, D. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.
16.
Zurück zum Zitat Todd, T., & Simmons, G. (1972). Effect of pore pressure on the velocity of compressional waves in low-porosity rrocks. Journal of Geophysical Research, 77(20), 3731–3743.CrossRef Todd, T., & Simmons, G. (1972). Effect of pore pressure on the velocity of compressional waves in low-porosity rrocks. Journal of Geophysical Research, 77(20), 3731–3743.CrossRef
17.
Zurück zum Zitat Hofmann, R., Xu, X., Batzle, M., Prasad, M., Furre, A.-K., & Pillitteri, A. (2005). Effective pressure or what is the effect of pressure? The Leading Edge, 24(12), 1256–1260.CrossRef Hofmann, R., Xu, X., Batzle, M., Prasad, M., Furre, A.-K., & Pillitteri, A. (2005). Effective pressure or what is the effect of pressure? The Leading Edge, 24(12), 1256–1260.CrossRef
18.
Zurück zum Zitat Vasquez, G. F., Vargas Junior, Ed A, Ribeiro, C. J. B., Leão, M., & Justen, J. C. R. (2009). Experimental determination of the effective pressure coefficients for brazilian limestones and sandstones. Revista Brasileira de Geofísica, 27(1), 43–53.CrossRef Vasquez, G. F., Vargas Junior, Ed A, Ribeiro, C. J. B., Leão, M., & Justen, J. C. R. (2009). Experimental determination of the effective pressure coefficients for brazilian limestones and sandstones. Revista Brasileira de Geofísica, 27(1), 43–53.CrossRef
19.
Zurück zum Zitat Nur, A. M., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Technical Program Expanded Abstracts, 14(1), 878–881.CrossRef Nur, A. M., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Technical Program Expanded Abstracts, 14(1), 878–881.CrossRef
20.
Zurück zum Zitat Salje, E. K. H., Koppensteiner, J., Schranz, W., & Fritsch, E. (2010). Elastic instabilities in dry, mesoporous minerals and their relevance to geological applications. Mineralogical Magazine, 74(2), 341–350.CrossRef Salje, E. K. H., Koppensteiner, J., Schranz, W., & Fritsch, E. (2010). Elastic instabilities in dry, mesoporous minerals and their relevance to geological applications. Mineralogical Magazine, 74(2), 341–350.CrossRef
21.
Zurück zum Zitat Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in berea and michigan sandstones. Geophysics, 62(4), 1163–1176.CrossRef Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in berea and michigan sandstones. Geophysics, 62(4), 1163–1176.CrossRef
22.
Zurück zum Zitat Christensen, N. I., & Wang, H. F. (1985). The influence of pore pressure and confining pressure on dynamic elastic properties of berea sandstone. Geophysics, 50(2), 207–213.CrossRef Christensen, N. I., & Wang, H. F. (1985). The influence of pore pressure and confining pressure on dynamic elastic properties of berea sandstone. Geophysics, 50(2), 207–213.CrossRef
23.
Zurück zum Zitat Gardner, G. H. F., Wyllie, M. R. J., & Droschak, D. M. (1965). Hysteresis in the velocity-pressure characteristics of rocks. Geophysics, 30(1), 111–116.CrossRef Gardner, G. H. F., Wyllie, M. R. J., & Droschak, D. M. (1965). Hysteresis in the velocity-pressure characteristics of rocks. Geophysics, 30(1), 111–116.CrossRef
24.
Zurück zum Zitat Hart, B. S., Flemings, P. B., & Deshpande, A. (1995). Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a gulf coast pleistocene basin. Geology, 23(1), 45–48.CrossRef Hart, B. S., Flemings, P. B., & Deshpande, A. (1995). Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a gulf coast pleistocene basin. Geology, 23(1), 45–48.CrossRef
25.
Zurück zum Zitat Cuss, R. J., Rutter, E. H., & Holloway, R. F. (2003). The application of critical state soil mechanics to the mechanical behaviour of porous sandstones. International Journal of Rock Mechanics and Mining Sciences, 40(6), 847–862.CrossRef Cuss, R. J., Rutter, E. H., & Holloway, R. F. (2003). The application of critical state soil mechanics to the mechanical behaviour of porous sandstones. International Journal of Rock Mechanics and Mining Sciences, 40(6), 847–862.CrossRef
26.
Zurück zum Zitat Hatchell, P., & Bourne, S. (2005). Rocks under strain. The Leading Edge, 24(12), 1222–1225.CrossRef Hatchell, P., & Bourne, S. (2005). Rocks under strain. The Leading Edge, 24(12), 1222–1225.CrossRef
27.
Zurück zum Zitat Chapman, M., Zatsepin, S. V., & Crampin, S. (2002). Derivation of a microstructural poroelastic model. Geophysical Journal International, 151(2), 427–451.CrossRef Chapman, M., Zatsepin, S. V., & Crampin, S. (2002). Derivation of a microstructural poroelastic model. Geophysical Journal International, 151(2), 427–451.CrossRef
28.
Zurück zum Zitat Mavko, G., & Nur, A. (1975). Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11), 1444–1448.CrossRef Mavko, G., & Nur, A. (1975). Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11), 1444–1448.CrossRef
29.
Zurück zum Zitat O’Connell, R. J., & Budiansky, B. (1977). Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research, 82(36), 5719–5735.CrossRef O’Connell, R. J., & Budiansky, B. (1977). Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research, 82(36), 5719–5735.CrossRef
30.
Zurück zum Zitat Winkler, K., & Nur, A. (1979). Pore fluids and seismic attenuation in rocks. Geophysical Research Letter, 6(1), 1–4.CrossRef Winkler, K., & Nur, A. (1979). Pore fluids and seismic attenuation in rocks. Geophysical Research Letter, 6(1), 1–4.CrossRef
31.
Zurück zum Zitat Gassmann, F. (1951b). Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23. Gassmann, F. (1951b). Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.
32.
Zurück zum Zitat Siggins, A. F., & Dewhurst, D. N. (2003). Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophysical Research Letter, 30(2), 1089.CrossRef Siggins, A. F., & Dewhurst, D. N. (2003). Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophysical Research Letter, 30(2), 1089.CrossRef
33.
Zurück zum Zitat Eberhart-Phillips, D., Han, D. H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.CrossRef Eberhart-Phillips, D., Han, D. H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.CrossRef
34.
Zurück zum Zitat Al-Wardy, W., & Zimmerman, R. W. (2004). Effective stress law for the permeability of clay-rich sandstones. Journal of Geophysical Research, 109(B4), B04203. Al-Wardy, W., & Zimmerman, R. W. (2004). Effective stress law for the permeability of clay-rich sandstones. Journal of Geophysical Research, 109(B4), B04203.
35.
Zurück zum Zitat Wong, T-f, David, C., & Zhu, W. (1997). he transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research, 102(B2), 3009–3025.CrossRef Wong, T-f, David, C., & Zhu, W. (1997). he transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research, 102(B2), 3009–3025.CrossRef
36.
Zurück zum Zitat Nur, A., & Simmons, G. (1969). The effect of viscosity of a fluid phase on velocity in low porosity rocks. Earth and Planetary Science Letters, 7(2), 99–108.CrossRef Nur, A., & Simmons, G. (1969). The effect of viscosity of a fluid phase on velocity in low porosity rocks. Earth and Planetary Science Letters, 7(2), 99–108.CrossRef
37.
Zurück zum Zitat Lu, C., & Jackson, I. (2006). Low-frequency seismic properties of thermally cracked and argon-saturated granite. Geophysics, 71(6), F147–F159.CrossRef Lu, C., & Jackson, I. (2006). Low-frequency seismic properties of thermally cracked and argon-saturated granite. Geophysics, 71(6), F147–F159.CrossRef
38.
Zurück zum Zitat Mavko, G., & Vanorio, T. (2010). The influence of pore fluids and frequency on apparent effective stress behavior of seismic velocities. Geophysics, 75(1), N1–N7.CrossRef Mavko, G., & Vanorio, T. (2010). The influence of pore fluids and frequency on apparent effective stress behavior of seismic velocities. Geophysics, 75(1), N1–N7.CrossRef
Metadaten
Titel
Fluid Pressure and Failure Modes of Sandstones
verfasst von
Su-Ying Chien
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-03098-2_7