Skip to main content
Erschienen in: Meccanica 11-12/2017

27.02.2017

Fluid–structure interaction analysis of free convection in an inclined square cavity partitioned by a flexible impermeable membrane with sinusoidal temperature heating

verfasst von: S. A. M. Mehryan, A. J. Chamkha, M. A. Ismael, M. Ghalambaz

Erschienen in: Meccanica | Ausgabe 11-12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of unsteady natural convection inside an inclined square cavity partitioned by a flexible impermeable membrane is studied numerically using the finite-element method along with the Arbitrary Lagrangian–Eulerian (ALE) approach. The bottom and top walls of the cavity are kept adiabatic. The left side wall is kept isothermal at a high temperature, while the right wall is cooled in a sinusoidal fashion. The cavity is provided by two eyelets to compensate volume changes due to the movement of the flexible membrane. The studied pertinent parameters are the Rayleigh number (in the range of 1E4–1E7), the amplitude of the sinusoidal wall temperature (A in the range of 0–1.0), the inclination angle of the cavity (in the range of −π/3 to π/3), and the body force parameter (Fv in the range of −1.64E−2 to +1.64E−2) whereas the Prandtl number is fixed at 6.2. The results show that at a low Rayleigh number, the membrane shape is a function of the imposed body force. While at a high Rayleigh number, the buoyancy force becomes responsible for the membrane deflection. The natural convection is appreciably affected by the inclination angle of the cavity which in turn, affects the concave or convex shape of the membrane.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Davis GD (1983) Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids 3:249–263CrossRefMATH Davis GD (1983) Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids 3:249–263CrossRefMATH
2.
Zurück zum Zitat Basak T, Roy S, Pop I (2009) Heat flow analysis for natural convection within trapezoidal enclosures based on heatline concept. Int J Heat Mass Transf 52:2471–2483CrossRefMATH Basak T, Roy S, Pop I (2009) Heat flow analysis for natural convection within trapezoidal enclosures based on heatline concept. Int J Heat Mass Transf 52:2471–2483CrossRefMATH
3.
Zurück zum Zitat Kaluri RS, Anandalakshmi R, Basak T (2010) Bejan’s heatline analysis of natural convection in right-angled triangular enclosures: effects of aspect-ratio and thermal boundary conditions. Int J Therm Sci 49:1576–1592CrossRef Kaluri RS, Anandalakshmi R, Basak T (2010) Bejan’s heatline analysis of natural convection in right-angled triangular enclosures: effects of aspect-ratio and thermal boundary conditions. Int J Therm Sci 49:1576–1592CrossRef
4.
Zurück zum Zitat Alawadhi EM (2004) Phase change process with free convection in a circular enclosure: numerical simulations. Comput Fluids 33:1335–1348CrossRefMATH Alawadhi EM (2004) Phase change process with free convection in a circular enclosure: numerical simulations. Comput Fluids 33:1335–1348CrossRefMATH
5.
Zurück zum Zitat Nazari M, Ramzani S (2014) Cooling of an electronic board situated in various configurations inside an enclosure: lattice Boltzmann method. Meccanica 49:645–658MathSciNetCrossRefMATH Nazari M, Ramzani S (2014) Cooling of an electronic board situated in various configurations inside an enclosure: lattice Boltzmann method. Meccanica 49:645–658MathSciNetCrossRefMATH
6.
Zurück zum Zitat Goodarzi M, Safaei MR, Karimipour A, Hooman K, Dahari M, Kazi SN, Sadeghinezhad E (2014) Comparison of the finite volume and lattice boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures. Abstr Appl Anal 2014:1–15MathSciNet Goodarzi M, Safaei MR, Karimipour A, Hooman K, Dahari M, Kazi SN, Sadeghinezhad E (2014) Comparison of the finite volume and lattice boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures. Abstr Appl Anal 2014:1–15MathSciNet
7.
Zurück zum Zitat Sathiyamoorthy M, Basak T, Roy S, Pop I (2007) Steady natural convection flows in a square cavity with linearly heated side wall(s). Int J Heat Mass Transf 50:766–775CrossRefMATH Sathiyamoorthy M, Basak T, Roy S, Pop I (2007) Steady natural convection flows in a square cavity with linearly heated side wall(s). Int J Heat Mass Transf 50:766–775CrossRefMATH
8.
Zurück zum Zitat Payan S, Sarvari SMH, Ajam H (2009) Inverse boundary design of square enclosures with natural convection. Int J Therm Sci 48:682–690CrossRef Payan S, Sarvari SMH, Ajam H (2009) Inverse boundary design of square enclosures with natural convection. Int J Therm Sci 48:682–690CrossRef
9.
Zurück zum Zitat Ismail KAR, Salinas C (2006) Non-gray radiative convective conductive modeling of a double glass window with a cavity filled with a mixture of absorbing gases. Int J Heat Mass Transf 49:2972–2983CrossRefMATH Ismail KAR, Salinas C (2006) Non-gray radiative convective conductive modeling of a double glass window with a cavity filled with a mixture of absorbing gases. Int J Heat Mass Transf 49:2972–2983CrossRefMATH
10.
Zurück zum Zitat Cheong HT, Siri Z, Sivasankaran S (2013) Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition. Int Commun Heat Mass Transf 45:75–85CrossRef Cheong HT, Siri Z, Sivasankaran S (2013) Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition. Int Commun Heat Mass Transf 45:75–85CrossRef
11.
Zurück zum Zitat Abu-Nada E, Chamkha AJ (2010) Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–water nanofluid. Int J Therm Sci 49:2339–2352CrossRef Abu-Nada E, Chamkha AJ (2010) Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–water nanofluid. Int J Therm Sci 49:2339–2352CrossRef
12.
Zurück zum Zitat Ho CJ, Liu WK, Chang YS, Lin CC (2010) Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49:1345–1353CrossRef Ho CJ, Liu WK, Chang YS, Lin CC (2010) Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49:1345–1353CrossRef
13.
Zurück zum Zitat Santra AK, Sen S, Chakraborty N (2008) Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. Int J Therm Sci 47:1113–1122CrossRef Santra AK, Sen S, Chakraborty N (2008) Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. Int J Therm Sci 47:1113–1122CrossRef
14.
Zurück zum Zitat Ghalambaz M, Behseresht A, Behseresht J, Chamkha AJ (2015) Effects of Nanoparticles diameter and concentration on natural convection of the Al2O3–Water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv Powder Technol 26:224–235CrossRef Ghalambaz M, Behseresht A, Behseresht J, Chamkha AJ (2015) Effects of Nanoparticles diameter and concentration on natural convection of the Al2O3–Water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv Powder Technol 26:224–235CrossRef
15.
Zurück zum Zitat Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, De Rossi D (2015) Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of Size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol 26:935–946CrossRef Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, De Rossi D (2015) Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of Size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol 26:935–946CrossRef
16.
Zurück zum Zitat Al-Mudhaf A, Chamkha AJ (2004) Natural convection of liquid metals in an inclined enclosure in the presence of a magnetic field. Int J Fluid Mech Res 31:221–243CrossRef Al-Mudhaf A, Chamkha AJ (2004) Natural convection of liquid metals in an inclined enclosure in the presence of a magnetic field. Int J Fluid Mech Res 31:221–243CrossRef
17.
Zurück zum Zitat Sathiyamoorthy M, Chamkha AJ (2010) Effect of magnetic field on natural convection flow in a square cavity for linearly heated side wall(s). Int J Therm Sci 49:1856–1865CrossRef Sathiyamoorthy M, Chamkha AJ (2010) Effect of magnetic field on natural convection flow in a square cavity for linearly heated side wall(s). Int J Therm Sci 49:1856–1865CrossRef
18.
Zurück zum Zitat Sathiyamoorthy M, Chamkha AJ (2012) Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int J Numer Methods Heat Fluid Flow 22:677–698CrossRefMATH Sathiyamoorthy M, Chamkha AJ (2012) Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int J Numer Methods Heat Fluid Flow 22:677–698CrossRefMATH
19.
Zurück zum Zitat Nishimura T (1989) Natural convection in horizontal enclosures with multiple partitions. Int J Heat Mass Transf 32:1641–1647CrossRef Nishimura T (1989) Natural convection in horizontal enclosures with multiple partitions. Int J Heat Mass Transf 32:1641–1647CrossRef
20.
Zurück zum Zitat Ben-Nakhi A, Chamkha AJ (2006) Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numer Heat Transf Part A 50:381–399ADSCrossRef Ben-Nakhi A, Chamkha AJ (2006) Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numer Heat Transf Part A 50:381–399ADSCrossRef
21.
Zurück zum Zitat Ben-Nakhi A, Chamkha AJ (2007) Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length. Int J Therm Sci 46:467–478CrossRef Ben-Nakhi A, Chamkha AJ (2007) Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length. Int J Therm Sci 46:467–478CrossRef
22.
Zurück zum Zitat Jelti R, Acharya S, Zimmerman E (1986) Influence of baffle location on natural convection in partially divided enclosure. Numer Heat Transf 10:521–536ADS Jelti R, Acharya S, Zimmerman E (1986) Influence of baffle location on natural convection in partially divided enclosure. Numer Heat Transf 10:521–536ADS
23.
Zurück zum Zitat Ben Cheikh N, Chamkha AJ, Ben Beya B (2009) Effect of inclination on heat transfer and fluid flow in a finned enclosure filled with a dielectric liquid. Numer Heat Transf Part A 56:286–300ADSCrossRef Ben Cheikh N, Chamkha AJ, Ben Beya B (2009) Effect of inclination on heat transfer and fluid flow in a finned enclosure filled with a dielectric liquid. Numer Heat Transf Part A 56:286–300ADSCrossRef
24.
Zurück zum Zitat Tasnim SH, Collins MR (2005) Suppressing natural convection in a differentially heated square cavity with an arc shaped baffle. Int Commun Heat Mass Transf 32:94–106CrossRef Tasnim SH, Collins MR (2005) Suppressing natural convection in a differentially heated square cavity with an arc shaped baffle. Int Commun Heat Mass Transf 32:94–106CrossRef
25.
Zurück zum Zitat Chamkha AJ, Mansour M, Ahmed SE (2010) Double diffusive natural convection in inclined finned triangular porous enclosures in the presence of heat generation/absorption effects. Heat Mass Transf 46:757–768ADSCrossRef Chamkha AJ, Mansour M, Ahmed SE (2010) Double diffusive natural convection in inclined finned triangular porous enclosures in the presence of heat generation/absorption effects. Heat Mass Transf 46:757–768ADSCrossRef
26.
Zurück zum Zitat Chamkha AJ, Ismael MA (2013) Conjugate heat transfer in a porous cavity filled with nanofluids and heated by triangular thick wall. Int J Therm Sci 67:135–151CrossRef Chamkha AJ, Ismael MA (2013) Conjugate heat transfer in a porous cavity filled with nanofluids and heated by triangular thick wall. Int J Therm Sci 67:135–151CrossRef
27.
Zurück zum Zitat Ismael M, Armaghani T, Chamkha AJ (2015) Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular Solid. J Taiwan Inst Chem Eng. doi:10.1016/j.jtice.2015.09.012 Ismael M, Armaghani T, Chamkha AJ (2015) Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular Solid. J Taiwan Inst Chem Eng. doi:10.​1016/​j.​jtice.​2015.​09.​012
28.
Zurück zum Zitat Chamkha AJ, Ismael MA (2014) Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Part A 65:1089–1113ADSCrossRef Chamkha AJ, Ismael MA (2014) Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Part A 65:1089–1113ADSCrossRef
29.
Zurück zum Zitat Ismael MA, Chamkha AJ (2015) Conjugate natural convection in a differentially heated composite enclosure filled with a nanofluid. J Porous Media 18:699–716CrossRef Ismael MA, Chamkha AJ (2015) Conjugate natural convection in a differentially heated composite enclosure filled with a nanofluid. J Porous Media 18:699–716CrossRef
30.
Zurück zum Zitat Xu F, Patterson JC, Lei ChW (2009) “Heat transfer through coupled thermal boundary layers induced by a suddenly generated temperature difference. Int J Heat Mass Transf 52:4966–4975CrossRefMATH Xu F, Patterson JC, Lei ChW (2009) “Heat transfer through coupled thermal boundary layers induced by a suddenly generated temperature difference. Int J Heat Mass Transf 52:4966–4975CrossRefMATH
31.
Zurück zum Zitat Kalabin EV, Kanashina MV, Zubkov PT (2005) Natural-convective heat transfer in a square cavity with time-varying side-wall temperature. Numer Heat Transf Part A 47:621–631ADSCrossRef Kalabin EV, Kanashina MV, Zubkov PT (2005) Natural-convective heat transfer in a square cavity with time-varying side-wall temperature. Numer Heat Transf Part A 47:621–631ADSCrossRef
32.
Zurück zum Zitat Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43:61–72CrossRefMATH Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43:61–72CrossRefMATH
33.
Zurück zum Zitat Fu WS, Shieh WJ (1992) A study of thermal convection in an enclosure induced simultaneously by gravity and vibration. Int J Heat Mass Transf 35:1695–1710ADSCrossRef Fu WS, Shieh WJ (1992) A study of thermal convection in an enclosure induced simultaneously by gravity and vibration. Int J Heat Mass Transf 35:1695–1710ADSCrossRef
34.
Zurück zum Zitat Fu WS, Shieh WJ (1993) Transient thermal convection in an enclosure induced simultaneously by gravity and vibration. Int J Heat Mass Transf 36:437–452ADSCrossRef Fu WS, Shieh WJ (1993) Transient thermal convection in an enclosure induced simultaneously by gravity and vibration. Int J Heat Mass Transf 36:437–452ADSCrossRef
35.
Zurück zum Zitat Kimoto H, Ishida H (2000) Vibration effects on the average heat transfer characteristics of the natural convection field in a square enclosure. Heat Transf Asian Res 29:545–558CrossRef Kimoto H, Ishida H (2000) Vibration effects on the average heat transfer characteristics of the natural convection field in a square enclosure. Heat Transf Asian Res 29:545–558CrossRef
36.
Zurück zum Zitat Fu WS, Ke WW, Wang KN (2001) Laminar forced convection in a channel with a moving block. Int J Heat Mass Transf 44:2385–2394CrossRefMATH Fu WS, Ke WW, Wang KN (2001) Laminar forced convection in a channel with a moving block. Int J Heat Mass Transf 44:2385–2394CrossRefMATH
37.
Zurück zum Zitat Florio LA, Harnoy A (2007) Use of a vibrating plate to enhance natural convection cooling of a discrete heat source in a vertical channel. Appl Therm Eng 27:2276–2293 (Heat Powered Cycles-4) CrossRef Florio LA, Harnoy A (2007) Use of a vibrating plate to enhance natural convection cooling of a discrete heat source in a vertical channel. Appl Therm Eng 27:2276–2293 (Heat Powered Cycles-4) CrossRef
38.
Zurück zum Zitat Razi YP, Maliwan K, Mojtabi MCC, Mojtabi A (2005) The influence of mechanical vibrations on buoyancy induced convection in porous media. In: Vafai K (ed) Handbook of porous media, 2nd edn. CRC Press, Boca Raton, pp 321–370 Razi YP, Maliwan K, Mojtabi MCC, Mojtabi A (2005) The influence of mechanical vibrations on buoyancy induced convection in porous media. In: Vafai K (ed) Handbook of porous media, 2nd edn. CRC Press, Boca Raton, pp 321–370
39.
Zurück zum Zitat Chung S, Vafai K (2010) Vibration induced mixed convection in an open-ended obstructed cavity. Int J Heat Mass Transf 53:2703–2714CrossRefMATH Chung S, Vafai K (2010) Vibration induced mixed convection in an open-ended obstructed cavity. Int J Heat Mass Transf 53:2703–2714CrossRefMATH
40.
Zurück zum Zitat Cheng L, Luan T, Du W, Xu M (2009) Heat transfer enhancement by flow induced vibration in heat exchangers. Int J Heat Mass Transf 52:1053–1057CrossRefMATH Cheng L, Luan T, Du W, Xu M (2009) Heat transfer enhancement by flow induced vibration in heat exchangers. Int J Heat Mass Transf 52:1053–1057CrossRefMATH
41.
Zurück zum Zitat D’Orazio A, Karimipour A, Hossein Nezhad A, Shirani E (2015) Lattice Boltzmann method with heat flux boundary condition applied to mixed convection in inclined lid driven cavity. Meccanica 50:945–962MathSciNetCrossRef D’Orazio A, Karimipour A, Hossein Nezhad A, Shirani E (2015) Lattice Boltzmann method with heat flux boundary condition applied to mixed convection in inclined lid driven cavity. Meccanica 50:945–962MathSciNetCrossRef
42.
Zurück zum Zitat Engel M, Griebel M (2006) Flow simulation on moving boundary-fitted grids and application to fluid-structure interaction problems. Int J Numer Methods Fluids 50:437–468MathSciNetCrossRefMATH Engel M, Griebel M (2006) Flow simulation on moving boundary-fitted grids and application to fluid-structure interaction problems. Int J Numer Methods Fluids 50:437–468MathSciNetCrossRefMATH
43.
Zurück zum Zitat Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14(14):227–253ADSCrossRefMATH Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14(14):227–253ADSCrossRefMATH
44.
Zurück zum Zitat Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349ADSMathSciNetCrossRefMATH Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349ADSMathSciNetCrossRefMATH
45.
Zurück zum Zitat Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33:689–723ADSCrossRefMATH Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33:689–723ADSCrossRefMATH
46.
Zurück zum Zitat Fu WS, Huang CP (2006) Effects of a vibrational heat surface on natural convection in a vertical channel flow. Int J Heat Mass Transf 49:1340–1349CrossRefMATH Fu WS, Huang CP (2006) Effects of a vibrational heat surface on natural convection in a vertical channel flow. Int J Heat Mass Transf 49:1340–1349CrossRefMATH
47.
Zurück zum Zitat Zienkiewicz O, Taylor R, Nithiarasu P (2013) The Finite Element Method for Fluid Dynamics, 7th edn. Elsevier Science, OxfordMATH Zienkiewicz O, Taylor R, Nithiarasu P (2013) The Finite Element Method for Fluid Dynamics, 7th edn. Elsevier Science, OxfordMATH
Metadaten
Titel
Fluid–structure interaction analysis of free convection in an inclined square cavity partitioned by a flexible impermeable membrane with sinusoidal temperature heating
verfasst von
S. A. M. Mehryan
A. J. Chamkha
M. A. Ismael
M. Ghalambaz
Publikationsdatum
27.02.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 11-12/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0639-8

Weitere Artikel der Ausgabe 11-12/2017

Meccanica 11-12/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.