Skip to main content
Erschienen in:

17.05.2023 | Original Article

FluTO: Graded multi-scale topology optimization of large contact area fluid-flow devices using neural networks

verfasst von: Rahul Kumar Padhy, Aaditya Chandrasekhar, Krishnan Suresh

Erschienen in: Engineering with Computers | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluid-flow devices with low dissipation, but large contact area, are of importance in many applications. A well-known strategy to design such devices is multi-scale topology optimization (MTO), where optimal microstructures are designed within each cell of a discretized domain. Unfortunately, MTO is computationally very expensive since one must perform homogenization of the evolving microstructures, during each step of the optimization process. Furthermore, methods to impose a desired contact area have not been pursued in MTO. Here, we propose a graded multiscale topology optimization for minimizing the dissipation in fluid-flow devices, subject to a desired contact area. Several pre-selected, but size-parameterized and orientable microstructures are chosen; their constitutive tensors and contact areas are pre-computed at a finite number of sizes. Then, during optimization, a simple interpolation is used to significantly reduce the computation while retaining many of the benefits of MTO. The algorithm allows for continuous switching between microstructures during optimization, but prevents mixing through penalization. The optimization is carried out using a neural network (NN) since: (1) the NN implicitly guarantees the partition of unity, i.e., ensures that the net volume fraction of microstructures in each cell is unity, (2) the number of design variables is only weakly dependent of the number of microstructure used, (3) it supports automatic differentiation, thereby eliminating manual sensitivity analysis, and (4) one can perform topology optimization at a coarser scale, and then extract a high-resolution design via a simple post-processing step. Several numerical results are presented to illustrate the proposed framework.

Graphical abstract

Given a set of candidate microstructures and a fluid topology optimization problem, a neural network (NN) selects appropriate microstructures, optimizes their size and orientation to produce a graded multi-scale design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNet Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNet
2.
Zurück zum Zitat Alexandersen J, Andreasen CS (2020) A review of topology optimisation for fluid-based problems. Fluids 5(1):29 Alexandersen J, Andreasen CS (2020) A review of topology optimisation for fluid-based problems. Fluids 5(1):29
3.
Zurück zum Zitat Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107MathSciNet Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107MathSciNet
4.
Zurück zum Zitat Nagrath S, Lecia V, Sequist SM, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239 Nagrath S, Lecia V, Sequist SM, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239
5.
Zurück zum Zitat Hugh Fan Z, Mangru S, Granzow R, Heaney P, Ho W, Dong Q, Kumar R (1999) Dynamic dna hybridization on a chip using paramagnetic beads. Anal Chem 71(21):4851–4859 Hugh Fan Z, Mangru S, Granzow R, Heaney P, Ho W, Dong Q, Kumar R (1999) Dynamic dna hybridization on a chip using paramagnetic beads. Anal Chem 71(21):4851–4859
6.
Zurück zum Zitat Hayes MA, Polson NA, Phayre AN, Garcia AA (2001) Flow-based microimmunoassay. Anal Chem 73(24):5896–5902 Hayes MA, Polson NA, Phayre AN, Garcia AA (2001) Flow-based microimmunoassay. Anal Chem 73(24):5896–5902
7.
Zurück zum Zitat Jiang G, Jed Harrison D (2000) mrna isolation in a microfluidic device for eventual integration of cdna library construction. Analyst 125(12):2176–2179 Jiang G, Jed Harrison D (2000) mrna isolation in a microfluidic device for eventual integration of cdna library construction. Analyst 125(12):2176–2179
8.
Zurück zum Zitat Liu Y-J, Guo S-S, Zhang Z-L, Huang W-H, Baigl D, Xie M, Chen Y, Pang D-W (2007) A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis 28(24):4713–4722 Liu Y-J, Guo S-S, Zhang Z-L, Huang W-H, Baigl D, Xie M, Chen Y, Pang D-W (2007) A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis 28(24):4713–4722
9.
Zurück zum Zitat Jin-Woo C, Oh KW, Thomas JH, Heineman WR, Halsall BH, Nevin JH, Helmicki AJ, Henderson Thurman H, Ahn CH (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2(1):27–30 Jin-Woo C, Oh KW, Thomas JH, Heineman WR, Halsall BH, Nevin JH, Helmicki AJ, Henderson Thurman H, Ahn CH (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2(1):27–30
10.
Zurück zum Zitat Zhu Y, Antao DS, Zhengmao L, Somasundaram S, Zhang T, Wang EN (2016) Prediction and characterization of dry-out heat flux in micropillar wick structures. Langmuir 32(7):1920–1927 Zhu Y, Antao DS, Zhengmao L, Somasundaram S, Zhang T, Wang EN (2016) Prediction and characterization of dry-out heat flux in micropillar wick structures. Langmuir 32(7):1920–1927
11.
Zurück zum Zitat Guo D, Alan JH, McGaughey JG, Fedder GK, Lee M, Yao S-C (2013) Multiphysics modeling of a micro-scale Stirling refrigeration system. Int J Therm Sci 74:44–52 Guo D, Alan JH, McGaughey JG, Fedder GK, Lee M, Yao S-C (2013) Multiphysics modeling of a micro-scale Stirling refrigeration system. Int J Therm Sci 74:44–52
12.
Zurück zum Zitat Moran M, Wesolek D, Berhane B, Rebello K (2004) Microsystem cooler development. In: 2nd international energy conversion engineering conference, p 5611 Moran M, Wesolek D, Berhane B, Rebello K (2004) Microsystem cooler development. In: 2nd international energy conversion engineering conference, p 5611
13.
Zurück zum Zitat Gregory D, Bixler BB (2012) Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8(44):11271–11284 Gregory D, Bixler BB (2012) Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8(44):11271–11284
14.
Zurück zum Zitat Gregory D, Bixler BB (2013) Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale 5(17):7685–7710 Gregory D, Bixler BB (2013) Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale 5(17):7685–7710
15.
Zurück zum Zitat Huang X, Wang J, Li T, Wang J, Min X, Weixing Yu, El Abed A, Zhang X (2018) Review on optofluidic microreactors for artificial photosynthesis. Beilstein J Nanotechnol 9(1):30–41 Huang X, Wang J, Li T, Wang J, Min X, Weixing Yu, El Abed A, Zhang X (2018) Review on optofluidic microreactors for artificial photosynthesis. Beilstein J Nanotechnol 9(1):30–41
16.
Zurück zum Zitat Li L, Chen R, Liao Q, Zhu X, Wang G, Wang D (2014) High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int J Hydrogen Energy 39(33):19270–19276 Li L, Chen R, Liao Q, Zhu X, Wang G, Wang D (2014) High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int J Hydrogen Energy 39(33):19270–19276
17.
Zurück zum Zitat Lauder GV, Wainwright DK, Domel AG, Weaver JC, Wen L, Bertoldi K (2016) Structure, biomimetics, and fluid dynamics of fish skin surfaces. Phys Rev Fluids 1(6):060502 Lauder GV, Wainwright DK, Domel AG, Weaver JC, Wen L, Bertoldi K (2016) Structure, biomimetics, and fluid dynamics of fish skin surfaces. Phys Rev Fluids 1(6):060502
18.
Zurück zum Zitat Evans HB, Gorumlu S, Aksak B, Castillo L, Sheng J (2016) Holographic microscopy and microfluidics platform for measuring wall stress and 3d flow over surfaces textured by micro-pillars. Sci Rep 6(1):1–12 Evans HB, Gorumlu S, Aksak B, Castillo L, Sheng J (2016) Holographic microscopy and microfluidics platform for measuring wall stress and 3d flow over surfaces textured by micro-pillars. Sci Rep 6(1):1–12
19.
Zurück zum Zitat Wu T (2019) Topology optimization of multiscale structures coupling fluid, thermal and mechanical analysis. Ph.D. thesis, Purdue University Graduate School Wu T (2019) Topology optimization of multiscale structures coupling fluid, thermal and mechanical analysis. Ph.D. thesis, Purdue University Graduate School
20.
Zurück zum Zitat Jun W, Ole S, Groen JP (2021) Topology optimization of multi-scale structures: a review. Struct Multidiscip Optim 63(3):1455–1480MathSciNet Jun W, Ole S, Groen JP (2021) Topology optimization of multi-scale structures: a review. Struct Multidiscip Optim 63(3):1455–1480MathSciNet
21.
Zurück zum Zitat Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci 43(15):5157–5167 Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci 43(15):5157–5167
22.
Zurück zum Zitat Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79(10):1284–1308MathSciNet Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79(10):1284–1308MathSciNet
23.
Zurück zum Zitat Allan G-H, Ole S, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192MathSciNet Allan G-H, Ole S, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192MathSciNet
24.
Zurück zum Zitat Guest JK, Prévost JH (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Eng 66(3):461–484MathSciNet Guest JK, Prévost JH (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Eng 66(3):461–484MathSciNet
25.
Zurück zum Zitat Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Methods Eng 69(7):1374–1404MathSciNet Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Methods Eng 69(7):1374–1404MathSciNet
26.
Zurück zum Zitat Pereira A, Talischi C, Paulino GH, Menezes IFM, Carvalho MS (2016) Fluid flow topology optimization in polytop: stability and computational implementation. Struct Multidiscip Optim 54(5):1345–1364MathSciNet Pereira A, Talischi C, Paulino GH, Menezes IFM, Carvalho MS (2016) Fluid flow topology optimization in polytop: stability and computational implementation. Struct Multidiscip Optim 54(5):1345–1364MathSciNet
27.
Zurück zum Zitat Suárez MAA, Romero JS, Pereira A, Menezes IFM (2022) On the virtual element method for topology optimization of non-Newtonian fluid-flow problems. In: Engineering with computers, pp 1–22 Suárez MAA, Romero JS, Pereira A, Menezes IFM (2022) On the virtual element method for topology optimization of non-Newtonian fluid-flow problems. In: Engineering with computers, pp 1–22
28.
Zurück zum Zitat Allaire G, Bonnetier E, Francfort G, Jouve F (1997) Shape optimization by the homogenization method. Numer Math 76:27–68MathSciNet Allaire G, Bonnetier E, Francfort G, Jouve F (1997) Shape optimization by the homogenization method. Numer Math 76:27–68MathSciNet
29.
Zurück zum Zitat Allaire G, Kohn RV (1993) Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur J Mech A Solids 12(6):839–878MathSciNet Allaire G, Kohn RV (1993) Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur J Mech A Solids 12(6):839–878MathSciNet
30.
Zurück zum Zitat Groen JP, Sigmund O (2018) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng 113(8):1148–1163MathSciNet Groen JP, Sigmund O (2018) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng 113(8):1148–1163MathSciNet
31.
Zurück zum Zitat Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35:107–115 Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35:107–115
32.
Zurück zum Zitat Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within fe2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542 Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within fe2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542
33.
Zurück zum Zitat Guest JK, Prévost JH (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4–6):1006–1017MathSciNet Guest JK, Prévost JH (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4–6):1006–1017MathSciNet
34.
Zurück zum Zitat Guest JK, Prévost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22–23):7028–7047 Guest JK, Prévost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22–23):7028–7047
35.
Zurück zum Zitat Dede EM, Zhou Y, Nomura T (2020) Inverse design of microchannel fluid flow networks using Turing pattern dehomogenization. Struct Multidiscip Optim 62(4):2203–2210MathSciNet Dede EM, Zhou Y, Nomura T (2020) Inverse design of microchannel fluid flow networks using Turing pattern dehomogenization. Struct Multidiscip Optim 62(4):2203–2210MathSciNet
36.
Zurück zum Zitat Zhou Y, Lohan DJ, Zhou F, Nomura T, Dede EM (2022) Inverse design of microreactor flow fields through anisotropic porous media optimization and dehomogenization. Chem Eng J 435:134587 Zhou Y, Lohan DJ, Zhou F, Nomura T, Dede EM (2022) Inverse design of microreactor flow fields through anisotropic porous media optimization and dehomogenization. Chem Eng J 435:134587
37.
Zurück zum Zitat Jakšić Z, Jakšić O (2020) Biomimetic nanomembranes: an overview. Biomimetics 5(2):24 Jakšić Z, Jakšić O (2020) Biomimetic nanomembranes: an overview. Biomimetics 5(2):24
38.
Zurück zum Zitat Nguyen CHP, Choi Y (2021) Multiscale design of functionally graded cellular structures for additive manufacturing using level-set descriptions. Struct Multidiscip Optim 64(4):1983–1995 Nguyen CHP, Choi Y (2021) Multiscale design of functionally graded cellular structures for additive manufacturing using level-set descriptions. Struct Multidiscip Optim 64(4):1983–1995
39.
Zurück zum Zitat Zhao R, Zhao J, Wang C (2022) Stress-constrained multiscale topology optimization with connectable graded microstructures using the worst-case analysis. Int J Numer Methods Eng 123(8):1882–1906MathSciNet Zhao R, Zhao J, Wang C (2022) Stress-constrained multiscale topology optimization with connectable graded microstructures using the worst-case analysis. Int J Numer Methods Eng 123(8):1882–1906MathSciNet
40.
Zurück zum Zitat Zheng L, Kumar S, Kochmann DM (2021) Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Comput Methods Appl Mech Eng 383:113894MathSciNet Zheng L, Kumar S, Kochmann DM (2021) Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Comput Methods Appl Mech Eng 383:113894MathSciNet
41.
Zurück zum Zitat Wang L, Tao S, Zhu P, Chen W (2021) Data-driven topology optimization with multiclass microstructures using latent variable gaussian process. J Mech Des 143(3):1–35 Wang L, Tao S, Zhu P, Chen W (2021) Data-driven topology optimization with multiclass microstructures using latent variable gaussian process. J Mech Des 143(3):1–35
42.
Zurück zum Zitat Wang L, van Beek A, Da D, Chan Y-C, Zhu P, Chen W (2022) Data-driven multiscale design of cellular composites with multiclass microstructures for natural frequency maximization. Compos Struct 280:114949 Wang L, van Beek A, Da D, Chan Y-C, Zhu P, Chen W (2022) Data-driven multiscale design of cellular composites with multiclass microstructures for natural frequency maximization. Compos Struct 280:114949
43.
Zurück zum Zitat Seth W, William A, Jun K, Tortorelli DA, White DA (2019) Simple, accurate surrogate models of the elastic response of three-dimensional open truss micro-architectures with applications to multiscale topology design. Struct Multidiscip Optim 60(5):1887–1920MathSciNet Seth W, William A, Jun K, Tortorelli DA, White DA (2019) Simple, accurate surrogate models of the elastic response of three-dimensional open truss micro-architectures with applications to multiscale topology design. Struct Multidiscip Optim 60(5):1887–1920MathSciNet
44.
Zurück zum Zitat White DA, Arrighi WJ, Kudo J, Watts SE (2019) Multiscale topology optimization using neural network surrogate models. Comput Methods Appl Mech Eng 346:1118–1135MathSciNet White DA, Arrighi WJ, Kudo J, Watts SE (2019) Multiscale topology optimization using neural network surrogate models. Comput Methods Appl Mech Eng 346:1118–1135MathSciNet
45.
Zurück zum Zitat Wang Y, Hang X, Pasini D (2017) Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 316:568–585MathSciNet Wang Y, Hang X, Pasini D (2017) Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 316:568–585MathSciNet
46.
Zurück zum Zitat Chandrasekhar A, Sridhara S, Suresh K (2022) Gm-tounn: graded multiscale topology optimization using neural networks. arXiv preprint arXiv:2204.06682 Chandrasekhar A, Sridhara S, Suresh K (2022) Gm-tounn: graded multiscale topology optimization using neural networks. arXiv preprint arXiv:​2204.​06682
47.
Zurück zum Zitat Li D, Dai N, Tang Y, Dong G, Zhao YF (2019) Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes. J Mech Des 141(7):1–13 Li D, Dai N, Tang Y, Dong G, Zhao YF (2019) Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes. J Mech Des 141(7):1–13
48.
Zurück zum Zitat Sanders ED, Aguiló MA, Paulino GH (2018) Multi-material continuum topology optimization with arbitrary volume and mass constraints. Comput Methods Appl Mech Eng 340:798–823MathSciNet Sanders ED, Aguiló MA, Paulino GH (2018) Multi-material continuum topology optimization with arbitrary volume and mass constraints. Comput Methods Appl Mech Eng 340:798–823MathSciNet
49.
Zurück zum Zitat Geng D, Wei C, Liu Y, Zhou M (2022) Concurrent topology optimization of multi-scale cooling channels with inlets and outlets. Struct Multidiscip Optim 65(8):234MathSciNet Geng D, Wei C, Liu Y, Zhou M (2022) Concurrent topology optimization of multi-scale cooling channels with inlets and outlets. Struct Multidiscip Optim 65(8):234MathSciNet
50.
Zurück zum Zitat Takezawa A, Zhang X, Kato M, Kitamura M (2019) Method to optimize an additively-manufactured functionally-graded lattice structure for effective liquid cooling. Addit Manuf 28:285–298 Takezawa A, Zhang X, Kato M, Kitamura M (2019) Method to optimize an additively-manufactured functionally-graded lattice structure for effective liquid cooling. Addit Manuf 28:285–298
51.
Zurück zum Zitat Takezawa A, Zhang X, Kitamura M (2019) Optimization of an additively manufactured functionally graded lattice structure with liquid cooling considering structural performances. Int J Heat Mass Transf 143:118564 Takezawa A, Zhang X, Kitamura M (2019) Optimization of an additively manufactured functionally graded lattice structure with liquid cooling considering structural performances. Int J Heat Mass Transf 143:118564
52.
Zurück zum Zitat Xu L, Cheng G (2018) Two-scale concurrent topology optimization with multiple micro materials based on principal stress direction. In: Advances in structural and multidisciplinary optimization: Proceedings of the 12th World congress of structural and multidisciplinary optimization (WCSMO12) 12. Springer, pp 1726–1737 Xu L, Cheng G (2018) Two-scale concurrent topology optimization with multiple micro materials based on principal stress direction. In: Advances in structural and multidisciplinary optimization: Proceedings of the 12th World congress of structural and multidisciplinary optimization (WCSMO12) 12. Springer, pp 1726–1737
53.
Zurück zum Zitat Liu Z, Xia L, Xia Q, Shi T (2020) Data-driven design approach to hierarchical hybrid structures with multiple lattice configurations. Struct Multidiscip Optim 61(6):2227–2235MathSciNet Liu Z, Xia L, Xia Q, Shi T (2020) Data-driven design approach to hierarchical hybrid structures with multiple lattice configurations. Struct Multidiscip Optim 61(6):2227–2235MathSciNet
54.
Zurück zum Zitat Wang Y, Kang Z (2019) Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model. Comput Methods Appl Mech Eng 347:340–364MathSciNet Wang Y, Kang Z (2019) Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model. Comput Methods Appl Mech Eng 347:340–364MathSciNet
55.
Zurück zum Zitat Zhou H, Zhu J, Wang C, Zhang Y, Wang J, Zhang W (2022) Hierarchical structure optimization with parameterized lattice and multiscale finite element method. Struct Multidiscip Optim 65(1):1–20MathSciNet Zhou H, Zhu J, Wang C, Zhang Y, Wang J, Zhang W (2022) Hierarchical structure optimization with parameterized lattice and multiscale finite element method. Struct Multidiscip Optim 65(1):1–20MathSciNet
56.
Zurück zum Zitat Alexandersen J, Lazarov BS (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Methods Appl Mech Eng 290:156–182MathSciNet Alexandersen J, Lazarov BS (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Methods Appl Mech Eng 290:156–182MathSciNet
57.
Zurück zum Zitat Andreasen CS (2011) Multiscale topology optimization of solid and fluid structures. DTU Technical University of Denmark Mechanical Engineering, Delhi Andreasen CS (2011) Multiscale topology optimization of solid and fluid structures. DTU Technical University of Denmark Mechanical Engineering, Delhi
58.
Zurück zum Zitat Popov P, Efendiev Y, Qin G (2009) Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun Comput Phys 6(1):162MathSciNet Popov P, Efendiev Y, Qin G (2009) Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun Comput Phys 6(1):162MathSciNet
59.
Zurück zum Zitat Laptev V (2003) Numerical solution of coupled flow in plain and porous media. Ph.D. thesis, Technische Universität Kaiserslautern Laptev V (2003) Numerical solution of coupled flow in plain and porous media. Ph.D. thesis, Technische Universität Kaiserslautern
60.
Zurück zum Zitat Aziz E-S, Chassapis C, Esche S, Dai S, Xu S, Jia R (2008) Online wind tunnel laboratory. In: 2008 annual conference and exposition, pp 13–949 Aziz E-S, Chassapis C, Esche S, Dai S, Xu S, Jia R (2008) Online wind tunnel laboratory. In: 2008 annual conference and exposition, pp 13–949
61.
Zurück zum Zitat Mohammed MG, Messerman AF, Mayhan BD, Trauth KM (2016) Theory and practice of the hydrodynamic redesign of artificial hellbender habitat. Herpetol Rev 47(4):586–591 Mohammed MG, Messerman AF, Mayhan BD, Trauth KM (2016) Theory and practice of the hydrodynamic redesign of artificial hellbender habitat. Herpetol Rev 47(4):586–591
62.
Zurück zum Zitat Balbi V, Ciarletta P (2013) Morpho-elasticity of intestinal villi. J R Soc Interface 10(82):20130109 Balbi V, Ciarletta P (2013) Morpho-elasticity of intestinal villi. J R Soc Interface 10(82):20130109
63.
Zurück zum Zitat Mohammed Ameen M, Peerlings RHJ, Geers MGD (2018) A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization. Eur J Mech A Solids 71:89–100MathSciNet Mohammed Ameen M, Peerlings RHJ, Geers MGD (2018) A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization. Eur J Mech A Solids 71:89–100MathSciNet
64.
Zurück zum Zitat Erik Andreassen and Casper Schousboe Andreasen (2014) How to determine composite material properties using numerical homogenization. Comput Mater Sci 83:488–495 Erik Andreassen and Casper Schousboe Andreasen (2014) How to determine composite material properties using numerical homogenization. Comput Mater Sci 83:488–495
65.
Zurück zum Zitat Lang PS, Paluszny A, Zimmerman RW (2014) Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions. J Geophys Res Solid Earth 119(8):6288–6307 Lang PS, Paluszny A, Zimmerman RW (2014) Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions. J Geophys Res Solid Earth 119(8):6288–6307
66.
Zurück zum Zitat Vianna RS, Cunha AM, Azeredo RBV, Leiderman R, Pereira A (2020) Computing effective permeability of porous media with fem and micro-ct: an educational approach. Fluids 5(1):16 Vianna RS, Cunha AM, Azeredo RBV, Leiderman R, Pereira A (2020) Computing effective permeability of porous media with fem and micro-ct: an educational approach. Fluids 5(1):16
67.
Zurück zum Zitat Kumar T, Sridhara S, Prabhune B, Suresh K (2021) Spectral decomposition for graded multi-scale topology optimization. Comput Methods Appl Mech Eng 377:113670MathSciNet Kumar T, Sridhara S, Prabhune B, Suresh K (2021) Spectral decomposition for graded multi-scale topology optimization. Comput Methods Appl Mech Eng 377:113670MathSciNet
68.
Zurück zum Zitat Chandrasekhar A, Suresh K (2021) Tounn: topology optimization using neural networks. Struct Multidiscip Optim 63(3):1135–1149MathSciNet Chandrasekhar A, Suresh K (2021) Tounn: topology optimization using neural networks. Struct Multidiscip Optim 63(3):1135–1149MathSciNet
69.
Zurück zum Zitat Chandrasekhar A, Suresh K (2021) Multi-material topology optimization using neural networks. Comput Aided Des 136:103017MathSciNet Chandrasekhar A, Suresh K (2021) Multi-material topology optimization using neural networks. Comput Aided Des 136:103017MathSciNet
70.
Zurück zum Zitat Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, Hamprecht F, Bengio Y, Courville A (2019) On the spectral bias of neural networks. In: International conference on machine learning. PMLR, pp 5301–5310 Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, Hamprecht F, Bengio Y, Courville A (2019) On the spectral bias of neural networks. In: International conference on machine learning. PMLR, pp 5301–5310
71.
Zurück zum Zitat Tancik M, Srinivasan P, Mildenhall B, Fridovich-Keil S, Raghavan N, Singhal U, Ramamoorthi R, Barron J, Ng R (2020) Fourier features let networks learn high frequency functions in low dimensional domains. Adv Neural Inf Process Syst 33:7537–7547 Tancik M, Srinivasan P, Mildenhall B, Fridovich-Keil S, Raghavan N, Singhal U, Ramamoorthi R, Barron J, Ng R (2020) Fourier features let networks learn high frequency functions in low dimensional domains. Adv Neural Inf Process Syst 33:7537–7547
72.
Zurück zum Zitat Chandrasekhar A, Suresh K (2022) Approximate length scale filter in topology optimization using Fourier enhanced neural networks. Comput Aided Des 150:103277MathSciNet Chandrasekhar A, Suresh K (2022) Approximate length scale filter in topology optimization using Fourier enhanced neural networks. Comput Aided Des 150:103277MathSciNet
73.
Zurück zum Zitat Maas AL, Hannun AY, Ng AY et al (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of icml. Atlanta, Georgia, USA, vol 30, p 3 Maas AL, Hannun AY, Ng AY et al (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of icml. Atlanta, Georgia, USA, vol 30, p 3
74.
Zurück zum Zitat Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic Press, New York Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic Press, New York
75.
Zurück zum Zitat Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization: Mathematical programming, Springer 45(1-3):503–528 Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization: Mathematical programming, Springer 45(1-3):503–528
76.
Zurück zum Zitat Chandrasekhar A, Sridhara S, Suresh K (2021) Auto: a framework for automatic differentiation in topology optimization. Struct Multidiscip Optim 64(6):4355–4365 Chandrasekhar A, Sridhara S, Suresh K (2021) Auto: a framework for automatic differentiation in topology optimization. Struct Multidiscip Optim 64(6):4355–4365
77.
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’ Alché-Buc F, Fox E, Garnett R (eds) Advances in neural information processing systems 32. Curran Associates, Inc., pp 8024–8035 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’ Alché-Buc F, Fox E, Garnett R (eds) Advances in neural information processing systems 32. Curran Associates, Inc., pp 8024–8035
78.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR workshop and conference Proceedings, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR workshop and conference Proceedings, pp 249–256
79.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr, pp 448–456 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. pmlr, pp 448–456
80.
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75 Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75
81.
Zurück zum Zitat Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin
82.
Zurück zum Zitat DeSalvo GJ, Swanson JA (1979) ANSYS engineering analysis system: user’s manual. Swanson Analysis Systems, Houston DeSalvo GJ, Swanson JA (1979) ANSYS engineering analysis system: user’s manual. Swanson Analysis Systems, Houston
83.
Zurück zum Zitat Ghasemi A, Elham A (2020) A novel topology optimization approach for flow power loss minimization across fin arrays. Energies 13(8):1987 Ghasemi A, Elham A (2020) A novel topology optimization approach for flow power loss minimization across fin arrays. Energies 13(8):1987
84.
Zurück zum Zitat Liang X, Li A, Rollett AD, Zhang YJ (2022) An isogeometric analysis-based topology optimization framework for 2d cross-flow heat exchangers with manufacturability constraints. Eng Comput 38(6):4829–4852 Liang X, Li A, Rollett AD, Zhang YJ (2022) An isogeometric analysis-based topology optimization framework for 2d cross-flow heat exchangers with manufacturability constraints. Eng Comput 38(6):4829–4852
85.
Zurück zum Zitat Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O, Lazarov BS (2018) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidiscip Optim 57(5):1905–1918MathSciNet Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O, Lazarov BS (2018) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidiscip Optim 57(5):1905–1918MathSciNet
86.
Zurück zum Zitat Foret P, Kleiner A, Mobahi H, Neyshabur B (2020) Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 Foret P, Kleiner A, Mobahi H, Neyshabur B (2020) Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:​2010.​01412
Metadaten
Titel
FluTO: Graded multi-scale topology optimization of large contact area fluid-flow devices using neural networks
verfasst von
Rahul Kumar Padhy
Aaditya Chandrasekhar
Krishnan Suresh
Publikationsdatum
17.05.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01827-6