Skip to main content
Erschienen in: Mechanics of Composite Materials 5/2012

01.11.2012

Flutter Analysis of a supersonic composite AirFoil skin by using the Differential Quadrature Method

Erschienen in: Mechanics of Composite Materials | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The differential quadrature method is extended to deal with an aeroelastic problem. A structural model is presented based on Hamilton’s principle, and the piston theory is used for modeling supersonic aerodynamic loads. A solution for the flutter of a composite wing skin is obtained by using the differential quadrature method. The validity of this method is confirmed by comparing its results with FEM solutions for the natural frequencies and flutter speed. Then, a detailed parametric study is carried out to examine the influence of the thickness, area, ply-angle, and aspect ratio of composite wings skins on their supersonic flutter behavior. It is shown that the flutter speed of a composite wing skin strongly depends on the area, thickness, ply angle, and aspect ratio of the structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Zhao Lie, “Vibration analysis of laminated composite cylindrical panels via a mesh free approach,” Int. J. of Solids and Structures, 40, 161-80, (2003).CrossRef X. Zhao Lie, “Vibration analysis of laminated composite cylindrical panels via a mesh free approach,” Int. J. of Solids and Structures, 40, 161-80, (2003).CrossRef
2.
Zurück zum Zitat M. K. Singha, L. S. Ramachandra, and J. N. Bandyopadhyay, “Nonlinear response of laminated cylindrical shell panels subjected to thermo-mechanical loads,” J. of Engineering Mechanics-ASCE, 132, 1088-1095, (2006).CrossRef M. K. Singha, L. S. Ramachandra, and J. N. Bandyopadhyay, “Nonlinear response of laminated cylindrical shell panels subjected to thermo-mechanical loads,” J. of Engineering Mechanics-ASCE, 132, 1088-1095, (2006).CrossRef
3.
Zurück zum Zitat Oh Il-Kwon, “Vibration characteristics and supersonic flutter of cylindrical composite panels with large thermoelastic deflections,” Composite Structures, 90, 208–216, (2009).CrossRef Oh Il-Kwon, “Vibration characteristics and supersonic flutter of cylindrical composite panels with large thermoelastic deflections,” Composite Structures, 90, 208–216, (2009).CrossRef
4.
Zurück zum Zitat M. K. Singha and M. Mandal, “Supersonic flutter characteristics of composite cylindrical panels,” Composite Structures, 82, 295-301 (2008).CrossRef M. K. Singha and M. Mandal, “Supersonic flutter characteristics of composite cylindrical panels,” Composite Structures, 82, 295-301 (2008).CrossRef
5.
Zurück zum Zitat A. Suleman, “Adaptive composites modeling and application in panel flutter and noise suppression,” Computers and Structures, 76, 365-378, (2000).CrossRef A. Suleman, “Adaptive composites modeling and application in panel flutter and noise suppression,” Computers and Structures, 76, 365-378, (2000).CrossRef
6.
Zurück zum Zitat R. M. V. Pidaparti and H. T. Y. Yang, “Supersonic flutter analysis of composite plates and shells,” AIAA J, 31, No. 6, 1109-1117. (1993).CrossRef R. M. V. Pidaparti and H. T. Y. Yang, “Supersonic flutter analysis of composite plates and shells,” AIAA J, 31, No. 6, 1109-1117. (1993).CrossRef
7.
Zurück zum Zitat G. W. Barr and R. O. Stearman, “Aeroelastic stability characteristics of cylindrical shells considering imperfections and edge constraint,” AIAA J, 7, No. 8, 912-919, (1969). G. W. Barr and R. O. Stearman, “Aeroelastic stability characteristics of cylindrical shells considering imperfections and edge constraint,” AIAA J, 7, No. 8, 912-919, (1969).
8.
Zurück zum Zitat Jang Sung Kuk, Application of Differential Quadrature to the Analysis of Structural Components, The University of Oklahoma. (1987). Jang Sung Kuk, Application of Differential Quadrature to the Analysis of Structural Components, The University of Oklahoma. (1987).
9.
Zurück zum Zitat Moinuddin Malik, Differential Quadrature Method in Computational Mechanics: New Developments and Applications. The University of Oklahoma. (1994). Moinuddin Malik, Differential Quadrature Method in Computational Mechanics: New Developments and Applications. The University of Oklahoma. (1994).
10.
Zurück zum Zitat Zahid Ahmad Siddiqi, Analysis of Interacting Sub-Domains in Structural Mechanics Problems by the Differential Quadrature Method. The University of Oklahoma (1996). Zahid Ahmad Siddiqi, Analysis of Interacting Sub-Domains in Structural Mechanics Problems by the Differential Quadrature Method. The University of Oklahoma (1996).
11.
Zurück zum Zitat R. Bellman and J. Casti, “Differential quadrature and long-lerm integration,” J. of Math. Analysis and Application, 34, 235-238, (1971)CrossRef R. Bellman and J. Casti, “Differential quadrature and long-lerm integration,” J. of Math. Analysis and Application, 34, 235-238, (1971)CrossRef
12.
Zurück zum Zitat C. W. Bert, S. K. Jang, and A. G. Striz, “Two new approximate methods for analyzing free vibration of structural components,” American Institute of Aeronautics and Astronautics J., 26, 612-618, (1988). C. W. Bert, S. K. Jang, and A. G. Striz, “Two new approximate methods for analyzing free vibration of structural components,” American Institute of Aeronautics and Astronautics J., 26, 612-618, (1988).
13.
Zurück zum Zitat A. G. Striz, S. K. Jang, and C. W. Bert, “Nonlinear bending analysis of thin circular plates by differential quadrature,” Thin-Walled Structures, 6, 51-62. (1988).CrossRef A. G. Striz, S. K. Jang, and C. W. Bert, “Nonlinear bending analysis of thin circular plates by differential quadrature,” Thin-Walled Structures, 6, 51-62. (1988).CrossRef
14.
Zurück zum Zitat S. K. Jang, C. W. Bert, and A. G. Striz, “Application of differential quadrature to static analysis of structural components,” Int. J. for Numerical Methods in Engineering, 28, 561-577, (1989).CrossRef S. K. Jang, C. W. Bert, and A. G. Striz, “Application of differential quadrature to static analysis of structural components,” Int. J. for Numerical Methods in Engineering, 28, 561-577, (1989).CrossRef
15.
Zurück zum Zitat A. N. Sherbourne and M. D. Pandey, “Differential quadrature method in the buckling analysis of beams and composite plates,” Computers and Structures, 40, 903-913, (1991).CrossRef A. N. Sherbourne and M. D. Pandey, “Differential quadrature method in the buckling analysis of beams and composite plates,” Computers and Structures, 40, 903-913, (1991).CrossRef
16.
Zurück zum Zitat C. Shu and B. E. Richards, “Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations,” Int. J. for Numerical Methods in Fluids, 15, 791-798, (1992).CrossRef C. Shu and B. E. Richards, “Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations,” Int. J. for Numerical Methods in Fluids, 15, 791-798, (1992).CrossRef
17.
Zurück zum Zitat R. H. Gutierrez and P. A. A. Laura, “Solution of the Helmholtz equation in a parallelogrammic domain with mixed boundary conditions using the differential quadrature method,” J. of Sound and Vibration, 178, 269-271, (1994).CrossRef R. H. Gutierrez and P. A. A. Laura, “Solution of the Helmholtz equation in a parallelogrammic domain with mixed boundary conditions using the differential quadrature method,” J. of Sound and Vibration, 178, 269-271, (1994).CrossRef
18.
Zurück zum Zitat M. Malik and C. W. Bert, “Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method,” Int. J. of Solids and Structures, 35, 299-318, (1998).CrossRef M. Malik and C. W. Bert, “Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method,” Int. J. of Solids and Structures, 35, 299-318, (1998).CrossRef
19.
Zurück zum Zitat G. R.Liu and T. Y. Wu, “Multipoint boundary value problems by differential quadrature method,” Mathematical and Computer Modeling, 35, 215-227, (2002).CrossRef G. R.Liu and T. Y. Wu, “Multipoint boundary value problems by differential quadrature method,” Mathematical and Computer Modeling, 35, 215-227, (2002).CrossRef
20.
Zurück zum Zitat Francesco Tornabene, “Free vibration of laminated composite doubly-curved shells and panels of revolution via the GDQ method,” Computer Methods in Applied Mechanics and Engineering, 10, 1-49, (2010). Francesco Tornabene, “Free vibration of laminated composite doubly-curved shells and panels of revolution via the GDQ method,” Computer Methods in Applied Mechanics and Engineering, 10, 1-49, (2010).
21.
Zurück zum Zitat S. C. Pradhan and A. Kumar, “Vibration analysis of orthotropic grapheme sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method,” Computational Materials Science, 50, 239-245, (2010).CrossRef S. C. Pradhan and A. Kumar, “Vibration analysis of orthotropic grapheme sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method,” Computational Materials Science, 50, 239-245, (2010).CrossRef
22.
Zurück zum Zitat G. Karami and P. Malekzadeh, “A new differential quadrature methodology for beam analysis and the associated differential quadrature element method,” Computer Methods in Applied Mechanics and Engineering, 10, 3509-3526, (2002).CrossRef G. Karami and P. Malekzadeh, “A new differential quadrature methodology for beam analysis and the associated differential quadrature element method,” Computer Methods in Applied Mechanics and Engineering, 10, 3509-3526, (2002).CrossRef
23.
Zurück zum Zitat Hans Krumhaar, “The accuracy of linear piston theory when applied to cylindrical shells,” AIAA J, 1, No. 6, 14481449 (1963). Hans Krumhaar, “The accuracy of linear piston theory when applied to cylindrical shells,” AIAA J, 1, No. 6, 14481449 (1963).
Metadaten
Titel
Flutter Analysis of a supersonic composite AirFoil skin by using the Differential Quadrature Method
Publikationsdatum
01.11.2012
Erschienen in
Mechanics of Composite Materials / Ausgabe 5/2012
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-012-9299-x

Weitere Artikel der Ausgabe 5/2012

Mechanics of Composite Materials 5/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.