Skip to main content
Erschienen in:

09.06.2024

Fog-Assisted Abnormal Motion Detection System: A Semantic Ontology Approach

verfasst von: R. S. Amshavalli, J. Kalaivani

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The growing concern over high-profile violence has led to a widespread adoption of intelligent smart video surveillance systems in educational institutions. However, accurately identifying abnormal events in the video stream remains a complex task due to the absence of a definitive generic definition for abnormal actions, heavily reliant on contextual factors. In this paper, we propose a fog-assisted abnormal motion recognition system utilizing an ontology-based semantic algorithm to bolster security within university campuses under real-time surveillance. Our ontology-based semantic analysis is meticulously designed to characterize intricate spatio-temporal interactions and contextual relationships in the video scene, thereby significantly improving the sensitivity in distinguishing abnormal events based on their severity level. To ensure swift responses to specific abnormal events, the video streams captured through surveillance cameras are processed at the edge of the network. Prior to semantic analysis, two crucial steps—foreground object segmentation and object tracking—are executed to streamline the detection process. These steps involve segmenting the target foreground using a connected components labeling algorithm and tracking motion patterns based on velocity, direction, and acceleration, employing the Kalman filter. The rule-based reasoning of the ontology accurately defines abnormal conditions in the video scene, providing a clearer understanding of the decision-making process. Furthermore, we incorporate a context-aware refinement step aimed at enhancing detection accuracy. This step distinguishes abnormal events based on their severity and generates corresponding alerts. We conducted extensive experiments and evaluated the proposed system using various measures, demonstrating its potential in real-time video analysis. The results showcase an impressive prediction success ratio of 0.989, affirming the reliability and robustness of our system in detecting abnormal events.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat F. Abdullah, A. Jalal, Multi-pedestrians anomaly detection via conditional random field and deep learning. In 2023 4th International Conference on Advancements in Computational Sciences (ICACS) (pp. 1–6) (2023). IEEE. F. Abdullah, A. Jalal, Multi-pedestrians anomaly detection via conditional random field and deep learning. In 2023 4th International Conference on Advancements in Computational Sciences (ICACS) (pp. 1–6) (2023). IEEE.
2.
Zurück zum Zitat R.A.M. Alairaji, I.A. Aljazaery, H.T.S. ALRikabi, Abnormal behavior detection of students in the examination hall from surveillance videos. In Advanced Computational Paradigms and Hybrid Intelligent Computing: Proceedings of ICACCP 2021 (pp. 113–125) (2022). Springer Singapore. R.A.M. Alairaji, I.A. Aljazaery, H.T.S. ALRikabi, Abnormal behavior detection of students in the examination hall from surveillance videos. In Advanced Computational Paradigms and Hybrid Intelligent Computing: Proceedings of ICACCP 2021 (pp. 113–125) (2022). Springer Singapore.
3.
Zurück zum Zitat M. Al-Nawashi, O.M. Al-Hazaimeh, M. Saraee, A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments. Neural Comput. Appl. 28, 565–572 (2017)CrossRef M. Al-Nawashi, O.M. Al-Hazaimeh, M. Saraee, A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments. Neural Comput. Appl. 28, 565–572 (2017)CrossRef
4.
Zurück zum Zitat R.S. Amshavalli, J. Kalaivani, Real-time institution video data analysis using fog computing and adaptive background subtraction. J. Real-Time Image Process. 20(5), 96 (2023)CrossRef R.S. Amshavalli, J. Kalaivani, Real-time institution video data analysis using fog computing and adaptive background subtraction. J. Real-Time Image Process. 20(5), 96 (2023)CrossRef
5.
7.
Zurück zum Zitat A. Awasthi, D. Bhat, M. Oak, N. Kayarvizhy, Effectiveness of Connected Components Labelling Approach in Noise Reduction for Image De-fencing. In Proceedings of International Conference on Communication and Computational Technologies: ICCCT 2021 (pp. 635–646) (2021). Springer Singapore. A. Awasthi, D. Bhat, M. Oak, N. Kayarvizhy, Effectiveness of Connected Components Labelling Approach in Noise Reduction for Image De-fencing. In Proceedings of International Conference on Communication and Computational Technologies: ICCCT 2021 (pp. 635–646) (2021). Springer Singapore.
8.
Zurück zum Zitat A. Balasundaram, G. Dilip, M. Manickam, A.K. Sivaraman, K. Gurunathan, R. Dhanalakshmi, S. Ashokkumar, Abnormality identification in video surveillance system using DCT. Intell. Automation Soft Comput. 32(2), 693 (2022)CrossRef A. Balasundaram, G. Dilip, M. Manickam, A.K. Sivaraman, K. Gurunathan, R. Dhanalakshmi, S. Ashokkumar, Abnormality identification in video surveillance system using DCT. Intell. Automation Soft Comput. 32(2), 693 (2022)CrossRef
9.
Zurück zum Zitat M. Cristani, M. Farenzena, D. Bloisi, V. Murino, Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP J. Adv. Signal Process. 2010, 1–24 (2010)CrossRef M. Cristani, M. Farenzena, D. Bloisi, V. Murino, Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP J. Adv. Signal Process. 2010, 1–24 (2010)CrossRef
10.
Zurück zum Zitat H. Deng, Z. Zhang, S. Zou, X. Li, Bi-Directional frame interpolation for unsupervised video anomaly detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 2634–2643) (2023) H. Deng, Z. Zhang, S. Zou, X. Li, Bi-Directional frame interpolation for unsupervised video anomaly detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 2634–2643) (2023)
11.
Zurück zum Zitat F. Farahi, H.S. Yazdi, Probabilistic Kalman filter for moving object tracking. Signal Process.: Image Commun. 82, 115751 (2020) F. Farahi, H.S. Yazdi, Probabilistic Kalman filter for moving object tracking. Signal Process.: Image Commun. 82, 115751 (2020)
12.
Zurück zum Zitat A. Flaborea, L. Collorone, G. D'Amely, S. D'Arrigo, B. Prenkaj, F. Galasso, Multimodal Motion Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection. arXiv preprint arXiv:2307.07205. (2023) A. Flaborea, L. Collorone, G. D'Amely, S. D'Arrigo, B. Prenkaj, F. Galasso, Multimodal Motion Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection. arXiv preprint arXiv:​2307.​07205. (2023)
13.
Zurück zum Zitat B. Garcia-Garcia, T. Bouwmans, A.J.R. Silva, Background subtraction in real applications: challenges, current models and future directions. Comput. Sci. Rev. 35, 100204 (2020)MathSciNetCrossRef B. Garcia-Garcia, T. Bouwmans, A.J.R. Silva, Background subtraction in real applications: challenges, current models and future directions. Comput. Sci. Rev. 35, 100204 (2020)MathSciNetCrossRef
15.
Zurück zum Zitat J.H. Giraldo, S. Javed, M. Sultana, S.K. Jung, T. Bouwmans, The emerging field of graph signal processing for moving object segmentation, in Frontiers of Computer Vision: 27th International Workshop, IW-FCV 2021, Daegu, South Korea, February 22–23, 2021, Revised Selected Papers. ed. by H. Jeong, K. Sumi (Springer International Publishing, Cham, 2021), pp.31–45. https://doi.org/10.1007/978-3-030-81638-4_3CrossRef J.H. Giraldo, S. Javed, M. Sultana, S.K. Jung, T. Bouwmans, The emerging field of graph signal processing for moving object segmentation, in Frontiers of Computer Vision: 27th International Workshop, IW-FCV 2021, Daegu, South Korea, February 22–23, 2021, Revised Selected Papers. ed. by H. Jeong, K. Sumi (Springer International Publishing, Cham, 2021), pp.31–45. https://​doi.​org/​10.​1007/​978-3-030-81638-4_​3CrossRef
16.
Zurück zum Zitat E. Hatirnaz, M. Sah, C. Direkoglu, A novel framework and concept-based semantic search Interface for abnormal crowd behaviour analysis in surveillance videos. Multimed. Tools Appl. 79(25–26), 17579–17617 (2020)CrossRef E. Hatirnaz, M. Sah, C. Direkoglu, A novel framework and concept-based semantic search Interface for abnormal crowd behaviour analysis in surveillance videos. Multimed. Tools Appl. 79(25–26), 17579–17617 (2020)CrossRef
17.
Zurück zum Zitat M. Hou, M. Wang, W. Zhao, Q. Ni, Z. Cai, X. Kong, A lightweight framework for abnormal driving behavior detection. Comput. Commun. 184, 128–136 (2022)CrossRef M. Hou, M. Wang, W. Zhao, Q. Ni, Z. Cai, X. Kong, A lightweight framework for abnormal driving behavior detection. Comput. Commun. 184, 128–136 (2022)CrossRef
18.
Zurück zum Zitat P.Y. Ingle, Y.G. Kim, Real-time abnormal object detection for video surveillance in smart cities. Sensors 22(10), 3862 (2022)CrossRef P.Y. Ingle, Y.G. Kim, Real-time abnormal object detection for video surveillance in smart cities. Sensors 22(10), 3862 (2022)CrossRef
21.
Zurück zum Zitat P. Matlani, M. Shrivastava, Efficient abnormal event detection in video using deep attention based bidirectional lstm with a mayfly optimization. Multimed. Tools Appl. 81(29), 42371–42392 (2022)CrossRef P. Matlani, M. Shrivastava, Efficient abnormal event detection in video using deep attention based bidirectional lstm with a mayfly optimization. Multimed. Tools Appl. 81(29), 42371–42392 (2022)CrossRef
22.
Zurück zum Zitat S. Messelodi, C.M. Modena, N. Segata, M. Zanin, A Kalman filter based background updating algorithm robust to sharp illumination changes. In Image Analysis and Processing–ICIAP 2005: 13th International Conference, Cagliari, Italy, September 6–8, 2005. Proceedings 13 (pp. 163–170) (2005). Springer Berlin Heidelberg S. Messelodi, C.M. Modena, N. Segata, M. Zanin, A Kalman filter based background updating algorithm robust to sharp illumination changes. In Image Analysis and Processing–ICIAP 2005: 13th International Conference, Cagliari, Italy, September 6–8, 2005. Proceedings 13 (pp. 163–170) (2005). Springer Berlin Heidelberg
23.
Zurück zum Zitat B. Omarov, S. Narynov, Z. Zhumanov, A. Gumar, M. Khassanova, State-of-the-art violence detection techniques in video surveillance security systems: a systematic review. PeerJ Comput. Sci. 8, e920 (2022)CrossRef B. Omarov, S. Narynov, Z. Zhumanov, A. Gumar, M. Khassanova, State-of-the-art violence detection techniques in video surveillance security systems: a systematic review. PeerJ Comput. Sci. 8, e920 (2022)CrossRef
25.
Zurück zum Zitat R. Sharma, A. Sungheetha, An efficient dimension reduction based fusion of CNN and SVM model for detection of abnormal incident in video surveillance. J. Soft Comput. Paradigm (JSCP) 3(02), 55–69 (2021)CrossRef R. Sharma, A. Sungheetha, An efficient dimension reduction based fusion of CNN and SVM model for detection of abnormal incident in video surveillance. J. Soft Comput. Paradigm (JSCP) 3(02), 55–69 (2021)CrossRef
26.
Zurück zum Zitat S.B. Song, J.H. Kim, SFMOG: super fast MOG based background subtraction algorithm. J. IKEEE 23(4), 1415–1422 (2019) S.B. Song, J.H. Kim, SFMOG: super fast MOG based background subtraction algorithm. J. IKEEE 23(4), 1415–1422 (2019)
28.
Zurück zum Zitat N. Vaswani, T. Bouwmans, S. Javed, P. Narayanamurthy, Robust subspace learning: robust PCA, robust subspace tracking, and robust subspace recovery. IEEE Signal Process. Mag. 35(4), 32–55 (2018)CrossRef N. Vaswani, T. Bouwmans, S. Javed, P. Narayanamurthy, Robust subspace learning: robust PCA, robust subspace tracking, and robust subspace recovery. IEEE Signal Process. Mag. 35(4), 32–55 (2018)CrossRef
29.
Zurück zum Zitat G. Wang, Y. Wang, J. Qin, D. Zhang, X. Bao, Di. Huang, Video anomaly detection by solving decoupled spatio-temporal jigsaw puzzles, in Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part X. ed. by S. Avidan, G. Brostow, M. Cissé, G.M. Farinella, T. Hassner (Springer Nature Switzerland, Cham, 2022), pp.494–511. https://doi.org/10.1007/978-3-031-20080-9_29CrossRef G. Wang, Y. Wang, J. Qin, D. Zhang, X. Bao, Di. Huang, Video anomaly detection by solving decoupled spatio-temporal jigsaw puzzles, in Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part X. ed. by S. Avidan, G. Brostow, M. Cissé, G.M. Farinella, T. Hassner (Springer Nature Switzerland, Cham, 2022), pp.494–511. https://​doi.​org/​10.​1007/​978-3-031-20080-9_​29CrossRef
30.
Zurück zum Zitat L. Xia, Z. Li, A new method of abnormal behavior detection using LSTM network with temporal attention mechanism. J. Supercomput. 77, 3223–3241 (2021)CrossRef L. Xia, Z. Li, A new method of abnormal behavior detection using LSTM network with temporal attention mechanism. J. Supercomput. 77, 3223–3241 (2021)CrossRef
32.
Zurück zum Zitat J. Yu, J.G. Kim, J. Gwak, B.G. Lee, M. Jeon, Abnormal event detection using adversarial predictive coding for motion and appearance. Inf. Sci. 586, 59–73 (2022)CrossRef J. Yu, J.G. Kim, J. Gwak, B.G. Lee, M. Jeon, Abnormal event detection using adversarial predictive coding for motion and appearance. Inf. Sci. 586, 59–73 (2022)CrossRef
33.
Zurück zum Zitat Y. Zhong, X. Chen, J. Jiang, F. Ren, A cascade reconstruction model with generalization ability evaluation for anomaly detection in videos. Pattern Recogn. 122, 108336 (2022)CrossRef Y. Zhong, X. Chen, J. Jiang, F. Ren, A cascade reconstruction model with generalization ability evaluation for anomaly detection in videos. Pattern Recogn. 122, 108336 (2022)CrossRef
Metadaten
Titel
Fog-Assisted Abnormal Motion Detection System: A Semantic Ontology Approach
verfasst von
R. S. Amshavalli
J. Kalaivani
Publikationsdatum
09.06.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 9/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02725-y