Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.11.2017 | Ausgabe 3/2018

Water Resources Management 3/2018

Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model

Zeitschrift:
Water Resources Management > Ausgabe 3/2018
Autor:
Masoud Karbasi

Abstract

Evapotranspiration is one of the most important components in the optimization of water use in agriculture and water resources management. In recent years, artificial intelligence methods and wavelet based hybrid model have been used for forecasting of hydrological parameters. In present study the application of the Gaussian Process Regression (GPR) and Wavelet-GPR models to forecast multi step ahead daily (1–30 days ahead) reference evapotranspiration at the synoptic station of Zanjan (Iran) were investigated. For this purpose a 10-year statistical period (2000–2009) was considered, 7 years (2000–2006) for training and the final three years (2007–2009) for testing the various models. Various combinations of input data (various lag times) and different kinds of mother wavelets were evaluated. Results showed that, compared to the GPR model, the hybrid model Wavelet-GPR had greater ability and accuracy in forecasting of daily evapotranspiration. Moreover, the use of yearly lag times in the GPR and wavelet-GPR model increased its accuracy. Investigation of various kinds of mother wavelets also indicated that the Meyer wavelet was the most suitable mother wavelet for forecasting of daily reference evapotranspiration. The results showed that by increasing the forecasting time period from 1 to 30 days, the accuracy of the models is reduced (RMSE = 0.068 mm/day for one day ahead and RMSE = 0.816 mm/day for 30 days ahead). Application of the proposed model to summer season showed that the performance of the model at summer season is better than its performance throughout the year.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2018

Water Resources Management 3/2018Zur Ausgabe

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Unsicherheitsabschätzung für die Berechnung von dynamischen Überschwemmungskarten – Fallstudie Kulmbach

Das vom BMBF geförderte Projekt FloodEvac hat zum Ziel, im Hochwasserfall räumliche und zeitliche Informationen der Hochwassergefährdung bereitzustellen. Im hier vorgestellten Teilprojekt werden Überschwemmungskarten zu Wassertiefen und Fließgeschwindigkeiten unter Angabe der Modellunsicherheiten berechnet.
Jetzt gratis downloaden!

Bildnachweise