Skip to main content

2018 | OriginalPaper | Buchkapitel

Formal Analysis of Network Motifs

verfasst von : Hillel Kugler, Sara-Jane Dunn, Boyan Yordanov

Erschienen in: Computational Methods in Systems Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A recurring set of small sub-networks have been identified as the building blocks of biological networks across diverse organisms. These network motifs have been associated with certain dynamical behaviors and define key modules that are important for understanding complex biological programs. Besides studying the properties of motifs in isolation, existing algorithms often evaluate the occurrence frequency of a specific motif in a given biological network compared to that in random networks of similar structure. However, it remains challenging to relate the structure of motifs to the observed and expected behavior of the larger network. Indeed, even the precise structure of these biological networks remains largely unknown. Previously, we developed a formal reasoning approach enabling the synthesis of biological networks capable of reproducing some experimentally observed behavior. Here, we extend this approach to allow reasoning about the requirement for specific network motifs as a way of explaining how these behaviors arise. We illustrate the approach by analyzing the motifs involved in sign-sensitive delay and pulse generation. We demonstrate the scalability and biological relevance of the approach by revealing the requirement for certain motifs in the network governing stem cell pluripotency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
While, in general, the motif assignment \(\theta \) is not invertible, \(\theta ^{-1}(c)\) and \(\theta ^{-1}(c')\) can be defined for the interactions \((c,c',*) \in I_{\mathcal {A}, \theta , \mathcal {M}}\) and \((c,c',*) \in I^?_{\mathcal {A}, \theta , \mathcal {M}}\).
 
2
Depending on the exact implementation, the delay can be observed when the signal switches from active to inactive instead, but this variation of a sign-sensitive delay is not considered here.
 
Literatur
1.
Zurück zum Zitat Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network motif counting and discovery by color coding. Bioinformatics 24(13), i241–i249 (2008)CrossRef Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network motif counting and discovery by color coding. Bioinformatics 24(13), i241–i249 (2008)CrossRef
2.
Zurück zum Zitat Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton (2006)MATH Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton (2006)MATH
3.
Zurück zum Zitat Amit, I., et al.: A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39(4), 503 (2007)CrossRef Amit, I., et al.: A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39(4), 503 (2007)CrossRef
4.
Zurück zum Zitat Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171–183. ACM (1983) Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171–183. ACM (1983)
5.
Zurück zum Zitat Barnat, J., Brim, L., Cerna, I., et al.: From simple regulatory motifs to parallel model checking of complex transcriptional networks. Pre-proceedings of Parallel and Distributed Methods in Verification (PDMC 2008), Budapest, pp. 83–96 (2008) Barnat, J., Brim, L., Cerna, I., et al.: From simple regulatory motifs to parallel model checking of complex transcriptional networks. Pre-proceedings of Parallel and Distributed Methods in Verification (PDMC 2008), Budapest, pp. 83–96 (2008)
6.
Zurück zum Zitat Chen, J., Hsu, W., Lee, M.L., Ng, S.K.: NeMoFinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 106–115. ACM (2006) Chen, J., Hsu, W., Lee, M.L., Ng, S.K.: NeMoFinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 106–115. ACM (2006)
7.
Zurück zum Zitat Dunn, S.J., Li, M.A., Carbognin, E., Smith, A.G., Martello, G.: A common molecular logic determines embryonic stem cell self-renewal and reprogramming. bioRxiv, p. 200501 (2017) Dunn, S.J., Li, M.A., Carbognin, E., Smith, A.G., Martello, G.: A common molecular logic determines embryonic stem cell self-renewal and reprogramming. bioRxiv, p. 200501 (2017)
8.
Zurück zum Zitat Dunn, S.J., Martello, G., Yordanov, B., Emmott, S., Smith, A.: Defining an essential transcription factor program for naïve pluripotency. Science 344(6188), 1156–1160 (2014)CrossRef Dunn, S.J., Martello, G., Yordanov, B., Emmott, S., Smith, A.: Defining an essential transcription factor program for naïve pluripotency. Science 344(6188), 1156–1160 (2014)CrossRef
11.
Zurück zum Zitat Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC Bioinform. 10(1), 318 (2009)CrossRef Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC Bioinform. 10(1), 318 (2009)CrossRef
12.
Zurück zum Zitat Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)CrossRef Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)CrossRef
13.
Zurück zum Zitat Khakabimamaghani, S., Sharafuddin, I., Dichter, N., Koch, I., Masoudi-Nejad, A.: QuateXelero: an accelerated exact network motif detection algorithm. PLoS One 8(7), e68073 (2013)CrossRef Khakabimamaghani, S., Sharafuddin, I., Dichter, N., Koch, I., Masoudi-Nejad, A.: QuateXelero: an accelerated exact network motif detection algorithm. PLoS One 8(7), e68073 (2013)CrossRef
14.
Zurück zum Zitat Kugler, H., Dunn, S.J., Yordanov, B.: Formal analysis of network motifs. bioRxiv (2018) Kugler, H., Dunn, S.J., Yordanov, B.: Formal analysis of network motifs. bioRxiv (2018)
15.
Zurück zum Zitat Li, X., Stones, D.S., Wang, H., Deng, H., Liu, X., Wang, G.: NetMODE: network motif detection without nauty. PLoS One 7(12), e50093 (2012)CrossRef Li, X., Stones, D.S., Wang, H., Deng, H., Liu, X., Wang, G.: NetMODE: network motif detection without nauty. PLoS One 7(12), e50093 (2012)CrossRef
16.
Zurück zum Zitat Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. Proc. Nat. Acad. Sci. 100(21), 11980–11985 (2003)CrossRef Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. Proc. Nat. Acad. Sci. 100(21), 11980–11985 (2003)CrossRef
17.
Zurück zum Zitat Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334(2), 197–204 (2003)CrossRef Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334(2), 197–204 (2003)CrossRef
19.
Zurück zum Zitat Meira, L.A., Máximo, V.R., Fazenda, Á.L., Da Conceição, A.F.: acc-Motif: accelerated network motif detection. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 11(5), 853–862 (2014)CrossRef Meira, L.A., Máximo, V.R., Fazenda, Á.L., Da Conceição, A.F.: acc-Motif: accelerated network motif detection. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 11(5), 853–862 (2014)CrossRef
20.
Zurück zum Zitat Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRef Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRef
21.
Zurück zum Zitat Nichols, J., Smith, A.: Pluripotency in the embryo and in culture. Cold Spring Harb. Perspect. Biol. 4(8), a008128 (2012)CrossRef Nichols, J., Smith, A.: Pluripotency in the embryo and in culture. Cold Spring Harb. Perspect. Biol. 4(8), a008128 (2012)CrossRef
22.
Zurück zum Zitat Nurse, P.: Life, logic and information. Nature 454(7203), 424–426 (2008)CrossRef Nurse, P.: Life, logic and information. Nature 454(7203), 424–426 (2008)CrossRef
23.
Zurück zum Zitat Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)CrossRef Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)CrossRef
24.
Zurück zum Zitat Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)CrossRef Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)CrossRef
25.
Zurück zum Zitat Reigl, M., Alon, U., Chklovskii, D.B.: Search for computational modules in the C. elegans brain. BMC Biol. 2(1), 25 (2004)CrossRef Reigl, M., Alon, U., Chklovskii, D.B.: Search for computational modules in the C. elegans brain. BMC Biol. 2(1), 25 (2004)CrossRef
26.
Zurück zum Zitat Schreiber, F., Schwöbbermeyer, H.: MAVisto: a tool for the exploration of network motifs. Bioinformatics 21(17), 3572–3574 (2005)CrossRef Schreiber, F., Schwöbbermeyer, H.: MAVisto: a tool for the exploration of network motifs. Bioinformatics 21(17), 3572–3574 (2005)CrossRef
27.
Zurück zum Zitat Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64 (2002)CrossRef Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64 (2002)CrossRef
28.
Zurück zum Zitat Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495 (2009) Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495 (2009)
29.
Zurück zum Zitat Tran, N.T.L., Mohan, S., Xu, Z., Huang, C.H.: Current innovations and future challenges of network motif detection. Brief. Bioinform. 16(3), 497–525 (2015)CrossRef Tran, N.T.L., Mohan, S., Xu, Z., Huang, C.H.: Current innovations and future challenges of network motif detection. Brief. Bioinform. 16(3), 497–525 (2015)CrossRef
30.
Zurück zum Zitat Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)CrossRef Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)CrossRef
31.
Zurück zum Zitat Wong, E., Baur, B., Quader, S., Huang, C.H.: Biological network motif detection: principles and practice. Brief. Bioinform. 13(2), 202–215 (2011)CrossRef Wong, E., Baur, B., Quader, S., Huang, C.H.: Biological network motif detection: principles and practice. Brief. Bioinform. 13(2), 202–215 (2011)CrossRef
32.
Zurück zum Zitat Yeger-Lotem, E., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. U.S.A. 101(16), 5934–5939 (2004)CrossRef Yeger-Lotem, E., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. U.S.A. 101(16), 5934–5939 (2004)CrossRef
33.
Zurück zum Zitat Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A method to identify and analyze biological programs through automated reasoning. NPJ Syst. Biol. Appl. 2(16010) (2016) Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A method to identify and analyze biological programs through automated reasoning. NPJ Syst. Biol. Appl. 2(16010) (2016)
Metadaten
Titel
Formal Analysis of Network Motifs
verfasst von
Hillel Kugler
Sara-Jane Dunn
Boyan Yordanov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-99429-1_7