Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2018

22.01.2018

Formation of Al/(Al13Fe4 + Al2O3) Nano-composites via Mechanical Alloying and Friction Stir Processing

verfasst von: Ghasem Azimi-Roeen, Seyed Farshid Kashani-Bozorg, Martin Nosko, Štefan Nagy, Igor Maťko

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Combination of mechanical alloying and friction stir processing was used for the fabrication of Al/(Al13Fe4 + Al2O3) nano-composites. Pre-milled hematite + Al powder mixture was introduced into the stir zone generated on 1050 aluminum alloy sheet by friction stir processing. Uniform and active milled powder mixture reacted with plasticized aluminum to produced Al13Fe4 + Al2O3 particles. Al13Fe4 intermetallic showed elliptical shape with a typical size of ~ 100 nm, while nano-sized Al2O3 exhibited irregular floc-shaped particles that formed clusters with the remnant of iron oxide particles in the fine recrystallized aluminum matrix. As the milling time (1-3 h) of the introduced powder mixture increased, the volume fraction of Al13Fe4 + Al2O3 particles increased in the fabricated composite. The hardness and ultimate tensile strength of the fabricated nano-composites varied from 54.5 to 75 HV and 139 to 159 MPa, respectively; these are much higher than those of the friction stir processed base alloy (33 HV and 97 UTS). The highest hardness and strength were achieved for the nano-composite fabricated using the 3-h milled powder mixture; hard nano-sized reaction products and fine recrystallized grains of Al matrix had major and minor roles on enhancing these properties, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Majeed, M. Jawaid, A. Hassan, A.A. Bakar, H.A. Khalil, and A.A. Salema, Potential Materials for Food Packaging from Nanoclay/Natural Fibres Filled Hybrid Composites, Mater. Des., 2013, 46, p 391–410CrossRef K. Majeed, M. Jawaid, A. Hassan, A.A. Bakar, H.A. Khalil, and A.A. Salema, Potential Materials for Food Packaging from Nanoclay/Natural Fibres Filled Hybrid Composites, Mater. Des., 2013, 46, p 391–410CrossRef
2.
Zurück zum Zitat F. Khodabakhshi, A. Gerlich, A. Simchi, and A. Kokabi, Hot Deformation Behavior of an Aluminum-Matrix Hybrid Nanocomposite Fabricated by Friction Stir Processing, Mater. Sci. Eng. A, 2015, 626, p 458–466CrossRef F. Khodabakhshi, A. Gerlich, A. Simchi, and A. Kokabi, Hot Deformation Behavior of an Aluminum-Matrix Hybrid Nanocomposite Fabricated by Friction Stir Processing, Mater. Sci. Eng. A, 2015, 626, p 458–466CrossRef
3.
Zurück zum Zitat S. Mitrović, M. Babić, B. Stojanović, N. Miloradović, M. Pantić, and D. Džunić, Tribological Potential of Hybrid Composites Based on Zinc and Aluminium Alloys Reinforced with SiC and Graphite Particles, Tribol. Ind., 2012, 34, p 177–185 S. Mitrović, M. Babić, B. Stojanović, N. Miloradović, M. Pantić, and D. Džunić, Tribological Potential of Hybrid Composites Based on Zinc and Aluminium Alloys Reinforced with SiC and Graphite Particles, Tribol. Ind., 2012, 34, p 177–185
4.
Zurück zum Zitat V. Sharma, U. Prakash, and B.M. Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134CrossRef V. Sharma, U. Prakash, and B.M. Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134CrossRef
5.
Zurück zum Zitat S.F. Kashani-Bozorg, M. Samiee, and A. Honarbakhsh-Raouf, Fabrication of Al/AlN Nano-composite Layers by Friction Stir Processing of 6061 Al-T6 Substrate, Surf. Interface Anal., 2015, 47, p 227–238CrossRef S.F. Kashani-Bozorg, M. Samiee, and A. Honarbakhsh-Raouf, Fabrication of Al/AlN Nano-composite Layers by Friction Stir Processing of 6061 Al-T6 Substrate, Surf. Interface Anal., 2015, 47, p 227–238CrossRef
6.
Zurück zum Zitat S. Alidokht, A. Abdollah-Zadeh, S. Soleymani, and H. Assadi, Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing, Mater. Des., 2011, 32, p 2727–2733CrossRef S. Alidokht, A. Abdollah-Zadeh, S. Soleymani, and H. Assadi, Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing, Mater. Des., 2011, 32, p 2727–2733CrossRef
7.
Zurück zum Zitat S. Soleymani, A. Abdollah-Zadeh, and S. Alidokht, Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced by Friction Stir Processing, Wear, 2012, 278, p 41–47CrossRef S. Soleymani, A. Abdollah-Zadeh, and S. Alidokht, Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced by Friction Stir Processing, Wear, 2012, 278, p 41–47CrossRef
8.
Zurück zum Zitat R. Palanivel, I. Dinaharan, R.F. Laubscher, and J.P. Davim, Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing, Mater. Des., 2016, 106, p 195–204CrossRef R. Palanivel, I. Dinaharan, R.F. Laubscher, and J.P. Davim, Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing, Mater. Des., 2016, 106, p 195–204CrossRef
9.
Zurück zum Zitat I. Dinaharan, G.A. Kumar, S.J. Vijay, and N. Murugan, Development of Al3Ti and Al3Zr Intermetallic Particulate Reinforced Aluminum Alloy AA6061 In-Situ Composites Using Friction Stir Processing, Mater. Des., 2014, 63, p 213–222CrossRef I. Dinaharan, G.A. Kumar, S.J. Vijay, and N. Murugan, Development of Al3Ti and Al3Zr Intermetallic Particulate Reinforced Aluminum Alloy AA6061 In-Situ Composites Using Friction Stir Processing, Mater. Des., 2014, 63, p 213–222CrossRef
10.
Zurück zum Zitat A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, Production of In-Situ Hard Ti/TiN Composite Surface Layers on CP-Ti Using Reactive Friction Stir Processing under Nitrogen Environment, Surf. Coat. Technol., 2013, 218, p 62–70CrossRef A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, Production of In-Situ Hard Ti/TiN Composite Surface Layers on CP-Ti Using Reactive Friction Stir Processing under Nitrogen Environment, Surf. Coat. Technol., 2013, 218, p 62–70CrossRef
11.
Zurück zum Zitat Q. Zhang, B. Xiao, Q. Wang, and Z. Ma, In Situ Al3Ti and Al2O3 Nanoparticles Reinforced Al Composites Produced by Friction Stir Processing in an Al-TiO2 System, Mater. Lett., 2011, 65, p 2070–2072CrossRef Q. Zhang, B. Xiao, Q. Wang, and Z. Ma, In Situ Al3Ti and Al2O3 Nanoparticles Reinforced Al Composites Produced by Friction Stir Processing in an Al-TiO2 System, Mater. Lett., 2011, 65, p 2070–2072CrossRef
12.
Zurück zum Zitat S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R Rep., 2000, 29(3), p 49–113CrossRef S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R Rep., 2000, 29(3), p 49–113CrossRef
13.
Zurück zum Zitat Q. Zhang, B.L. Xiao, D. Wang, and Z.Y. Ma, Formation Mechanism of In Situ Al3Ti in Al Matrix During Hot Pressing and Subsequent Friction Stir Processing, Mater. Chem. Phys., 2011, 130(3), p 1109–1117CrossRef Q. Zhang, B.L. Xiao, D. Wang, and Z.Y. Ma, Formation Mechanism of In Situ Al3Ti in Al Matrix During Hot Pressing and Subsequent Friction Stir Processing, Mater. Chem. Phys., 2011, 130(3), p 1109–1117CrossRef
14.
Zurück zum Zitat F. Khodabakhshi, A. Simchi, A.H. Kokabi, P. Švec, F. Simančík, and A.P. Gerlich, Effects of Nanometric Inclusions on the Microstructural Characteristics and Strengthening of a Friction-Stir Processed Aluminum-Magnesium Alloy, Mater. Sci. Eng. A, 2015, 642, p 215–229CrossRef F. Khodabakhshi, A. Simchi, A.H. Kokabi, P. Švec, F. Simančík, and A.P. Gerlich, Effects of Nanometric Inclusions on the Microstructural Characteristics and Strengthening of a Friction-Stir Processed Aluminum-Magnesium Alloy, Mater. Sci. Eng. A, 2015, 642, p 215–229CrossRef
15.
Zurück zum Zitat C. Hsu, P. Kao, and N. Ho, Intermetallic-Reinforced Aluminum Matrix Composites Produced In Situ by Friction Stir Processing, Mater. Lett., 2007, 61, p 1315–1318CrossRef C. Hsu, P. Kao, and N. Ho, Intermetallic-Reinforced Aluminum Matrix Composites Produced In Situ by Friction Stir Processing, Mater. Lett., 2007, 61, p 1315–1318CrossRef
16.
Zurück zum Zitat C.F. Chen, P.W. Kao, L. Chang, and N.J. Ho, Mechanical Properties of Nanometric Al2O3 Particulate-reinforced Al-Al11Ce3 Composites Produced by Friction Stir Processing, Mater. Trans., 2010, 51, p 933–938CrossRef C.F. Chen, P.W. Kao, L. Chang, and N.J. Ho, Mechanical Properties of Nanometric Al2O3 Particulate-reinforced Al-Al11Ce3 Composites Produced by Friction Stir Processing, Mater. Trans., 2010, 51, p 933–938CrossRef
17.
Zurück zum Zitat F. Khodabakhshi, A. Simchi, A. Kokabi, and A. Gerlich, Friction Stir Processing of an Aluminum-Magnesium Alloy with Pre-placing Elemental Titanium Powder: In-Situ Formation of an Al3Ti-Reinforced Nanocomposite and Materials Characterization, Mater. Charact., 2015, 108, p 102–114CrossRef F. Khodabakhshi, A. Simchi, A. Kokabi, and A. Gerlich, Friction Stir Processing of an Aluminum-Magnesium Alloy with Pre-placing Elemental Titanium Powder: In-Situ Formation of an Al3Ti-Reinforced Nanocomposite and Materials Characterization, Mater. Charact., 2015, 108, p 102–114CrossRef
18.
Zurück zum Zitat Q. Zhang, B. Xiao, W. Wang, and Z. Ma, Reactive Mechanism and Mechanical Properties of In Situ Composites Fabricated from an Al-TiO2 System by Friction Stir Processing, Acta Mater., 2012, 60, p 7090–7103CrossRef Q. Zhang, B. Xiao, W. Wang, and Z. Ma, Reactive Mechanism and Mechanical Properties of In Situ Composites Fabricated from an Al-TiO2 System by Friction Stir Processing, Acta Mater., 2012, 60, p 7090–7103CrossRef
19.
Zurück zum Zitat G. You, N. Ho, and P. Kao, The Microstructure and Mechanical Properties of an Al-CuO In-Situ Composite Produced Using Friction Stir Processing, Mater. Lett., 2013, 90, p 26–29CrossRef G. You, N. Ho, and P. Kao, The Microstructure and Mechanical Properties of an Al-CuO In-Situ Composite Produced Using Friction Stir Processing, Mater. Lett., 2013, 90, p 26–29CrossRef
20.
Zurück zum Zitat G. You, N. Ho, and P. Kao, In-Situ Formation of Al2O3 Nanoparticles During Friction Stir Processing of Al/SiO2 Composite, Mater. Charact., 2013, 80, p 1–8CrossRef G. You, N. Ho, and P. Kao, In-Situ Formation of Al2O3 Nanoparticles During Friction Stir Processing of Al/SiO2 Composite, Mater. Charact., 2013, 80, p 1–8CrossRef
21.
Zurück zum Zitat S. Dadbakhsh and L. Hao, Effect of Fe2O3 Content on Microstructure of Al Powder Consolidated Parts via Selective Laser Melting Using Various Laser Powers and Speeds, Int. J. Adv. Manuf. Technol., 2014, 73, p 1453–1463CrossRef S. Dadbakhsh and L. Hao, Effect of Fe2O3 Content on Microstructure of Al Powder Consolidated Parts via Selective Laser Melting Using Various Laser Powers and Speeds, Int. J. Adv. Manuf. Technol., 2014, 73, p 1453–1463CrossRef
22.
Zurück zum Zitat L. Durães, B.F. Costa, R. Santos, A. Correia, J. Campos, and A. Portugal, Fe2O3/Aluminum Thermite Reaction Intermediate and Final Products Characterization, Mater. Sci. Eng. A, 2007, 465, p 199–210CrossRef L. Durães, B.F. Costa, R. Santos, A. Correia, J. Campos, and A. Portugal, Fe2O3/Aluminum Thermite Reaction Intermediate and Final Products Characterization, Mater. Sci. Eng. A, 2007, 465, p 199–210CrossRef
23.
Zurück zum Zitat M. Rafiei, M. Enayati, and F. Karimzadeh, Kinetic Analysis of Thermite Reaction in Al-Ti-Fe2O3 System to Produce (Fe, Ti)3Al-Al2O3 Nanocomposite, Powder Technol., 2014, 253, p 553–560CrossRef M. Rafiei, M. Enayati, and F. Karimzadeh, Kinetic Analysis of Thermite Reaction in Al-Ti-Fe2O3 System to Produce (Fe, Ti)3Al-Al2O3 Nanocomposite, Powder Technol., 2014, 253, p 553–560CrossRef
24.
Zurück zum Zitat M.A. Trunov, M. Schoenitz, and E. Dreizin, Effect of Polymorphic Phase Transformations in Alumina Layer on Ignition of Aluminium Particles, Combust. Theor. Model., 2006, 10, p 603–623CrossRef M.A. Trunov, M. Schoenitz, and E. Dreizin, Effect of Polymorphic Phase Transformations in Alumina Layer on Ignition of Aluminium Particles, Combust. Theor. Model., 2006, 10, p 603–623CrossRef
25.
Zurück zum Zitat C. Chen, P. Kao, L. Chang, and N. Ho, Effect of Processing Parameters on Microstructure and Mechanical Properties of an Al-Al11Ce3-Al2O3 In-Situ Composite Produced by Friction Stir Processing, Metall. Mater. Trans. A, 2010, 41, p 513–522CrossRef C. Chen, P. Kao, L. Chang, and N. Ho, Effect of Processing Parameters on Microstructure and Mechanical Properties of an Al-Al11Ce3-Al2O3 In-Situ Composite Produced by Friction Stir Processing, Metall. Mater. Trans. A, 2010, 41, p 513–522CrossRef
26.
Zurück zum Zitat P. Yu, C.J. Deng, N.G. Ma, M.Y. Yau, and D.H. Ng, Formation of Nanostructured Eutectic Network in α-Al2O3 Reinforced Al-Cu Alloy Matrix Composite, Acta Mater., 2003, 51, p 3445–3454CrossRef P. Yu, C.J. Deng, N.G. Ma, M.Y. Yau, and D.H. Ng, Formation of Nanostructured Eutectic Network in α-Al2O3 Reinforced Al-Cu Alloy Matrix Composite, Acta Mater., 2003, 51, p 3445–3454CrossRef
27.
Zurück zum Zitat M.A. Trunov, M. Schoenitz, and E.L. Dreizin, Ignition of Aluminum Powders Under Different Experimental Conditions, Propellants Explos. Pyrotech., 2005, 30, p 36–43CrossRef M.A. Trunov, M. Schoenitz, and E.L. Dreizin, Ignition of Aluminum Powders Under Different Experimental Conditions, Propellants Explos. Pyrotech., 2005, 30, p 36–43CrossRef
28.
Zurück zum Zitat J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamio, Evolution of Iron Aluminide in Al/Fe In Situ Composites Fabricated by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 362(1), p 257–263CrossRef J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamio, Evolution of Iron Aluminide in Al/Fe In Situ Composites Fabricated by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 362(1), p 257–263CrossRef
29.
Zurück zum Zitat L. Ke, C. Huang, L. Xing, and K. Huang, Al-Ni Intermetallic Composites Produced In Situ by Friction Stir Processing, J. Alloys Compd., 2010, 503(2), p 494–499CrossRef L. Ke, C. Huang, L. Xing, and K. Huang, Al-Ni Intermetallic Composites Produced In Situ by Friction Stir Processing, J. Alloys Compd., 2010, 503(2), p 494–499CrossRef
30.
Zurück zum Zitat L. Liu, H. Nakayama, S. Fukumoto, A. Yamamoto, and H. Tsubakino, Microstructural Evolution in Friction Stir Welded 1050 Aluminum and 6061 Aluminum Alloy, Mater. Trans., 2004, 45(8), p 2665–2668CrossRef L. Liu, H. Nakayama, S. Fukumoto, A. Yamamoto, and H. Tsubakino, Microstructural Evolution in Friction Stir Welded 1050 Aluminum and 6061 Aluminum Alloy, Mater. Trans., 2004, 45(8), p 2665–2668CrossRef
31.
Zurück zum Zitat I. Ansara, A. Dinsdale, and M. Rand, COST 507: Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys—Thermochemical Database for Light Metal Alloys, Office for Official Publications of the European Communities, Brussels, 1998, p 396 I. Ansara, A. Dinsdale, and M. Rand, COST 507: Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys—Thermochemical Database for Light Metal Alloys, Office for Official Publications of the European Communities, Brussels, 1998, p 396
32.
Zurück zum Zitat Z. Ma, A. Pilchak, M. Juhas, and J. Williams, Microstructural Refinement and Property Enhancement of Cast Light Alloys via Friction Stir Processing, Scr. Mater., 2006, 58, p 361–366CrossRef Z. Ma, A. Pilchak, M. Juhas, and J. Williams, Microstructural Refinement and Property Enhancement of Cast Light Alloys via Friction Stir Processing, Scr. Mater., 2006, 58, p 361–366CrossRef
33.
Zurück zum Zitat P. Atkins, J. De Paula, and R. Friedman, Quanta, Matter, and Change: A Molecular Approach to Physical Chemistry, Oxford University Press, Oxford, 2009 P. Atkins, J. De Paula, and R. Friedman, Quanta, Matter, and Change: A Molecular Approach to Physical Chemistry, Oxford University Press, Oxford, 2009
34.
Zurück zum Zitat L. Zhu, J. He, D. Yan, Y. Dong, J. Zhang, and X. Li, Atmospheric Reactive Plasma Sprayed Fe-Al2O3-FeAl2O4 Composite Coating and Its Property Evaluation, Appl. Surf. Sci., 2011, 257, p 10282–10288CrossRef L. Zhu, J. He, D. Yan, Y. Dong, J. Zhang, and X. Li, Atmospheric Reactive Plasma Sprayed Fe-Al2O3-FeAl2O4 Composite Coating and Its Property Evaluation, Appl. Surf. Sci., 2011, 257, p 10282–10288CrossRef
35.
Zurück zum Zitat C. Labatut, R. Berjoan, B. Armas, S. Schamm, J. Sevely, and A. Roig, Studies of LPCVD Al-Fe-O Deposits by XPS, EELS and Mössbauer Spectroscopies, Surf. Coat. Technol., 1998, 105, p 31–37CrossRef C. Labatut, R. Berjoan, B. Armas, S. Schamm, J. Sevely, and A. Roig, Studies of LPCVD Al-Fe-O Deposits by XPS, EELS and Mössbauer Spectroscopies, Surf. Coat. Technol., 1998, 105, p 31–37CrossRef
36.
Zurück zum Zitat L. Li, Y. Zhang, C. Esling, H. Jiang, Z. Zhao, Y. Zuo et al., Influence of a High Magnetic Field on the Precipitation Behavior of the Primary Al3Fe Phase During the Solidification of a Hypereutectic Al-3.31 wt% Fe Alloy, J. Cryst. Growth, 2012, 339, p 61–69CrossRef L. Li, Y. Zhang, C. Esling, H. Jiang, Z. Zhao, Y. Zuo et al., Influence of a High Magnetic Field on the Precipitation Behavior of the Primary Al3Fe Phase During the Solidification of a Hypereutectic Al-3.31 wt% Fe Alloy, J. Cryst. Growth, 2012, 339, p 61–69CrossRef
37.
Zurück zum Zitat C. Allen, K. O’reilly, and B. Cantor, Effect of Semisolid Microstructure on Solidified Phase Content in 1xxx Al Alloys, Acta Mater., 2001, 49, p 1549–1563CrossRef C. Allen, K. O’reilly, and B. Cantor, Effect of Semisolid Microstructure on Solidified Phase Content in 1xxx Al Alloys, Acta Mater., 2001, 49, p 1549–1563CrossRef
38.
Zurück zum Zitat P. Bhattacharya, K. Ishihara, and K. Chattopadhyay, FeAl Multilayers by Sputtering: Heat Treatment and the Phase Evolution, Mater. Sci. Eng. A, 2001, 304, p 250–254CrossRef P. Bhattacharya, K. Ishihara, and K. Chattopadhyay, FeAl Multilayers by Sputtering: Heat Treatment and the Phase Evolution, Mater. Sci. Eng. A, 2001, 304, p 250–254CrossRef
39.
Zurück zum Zitat J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamio, Evolution of Iron Aluminide in Al/Fe In Situ Composites Fabricated by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 362, p 257–263CrossRef J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamio, Evolution of Iron Aluminide in Al/Fe In Situ Composites Fabricated by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 362, p 257–263CrossRef
40.
Zurück zum Zitat W. Gale and T. Totemeier, Smithells Metals Reference Book, Eight Edition, Amsterdam, Boston, Heidelberg, London, New York, ed: Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2004. W. Gale and T. Totemeier, Smithells Metals Reference Book, Eight Edition, Amsterdam, Boston, Heidelberg, London, New York, ed: Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2004.
41.
Zurück zum Zitat M. Shakiba, N. Parson, and X.G. Chen, Effect of Homogenization Treatment and Silicon Content on the Microstructure and Hot Workability of Dilute Al-Fe-Si Alloys, Mater. Sci. Eng. A, 2014, 619, p 180–189CrossRef M. Shakiba, N. Parson, and X.G. Chen, Effect of Homogenization Treatment and Silicon Content on the Microstructure and Hot Workability of Dilute Al-Fe-Si Alloys, Mater. Sci. Eng. A, 2014, 619, p 180–189CrossRef
42.
Zurück zum Zitat J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamio, Fabrication of Al/Al3Fe Composites by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 343, p 199–209CrossRef J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamio, Fabrication of Al/Al3Fe Composites by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 343, p 199–209CrossRef
43.
Zurück zum Zitat C. Yu, P. Kao, and C. Chang, Transition of Tensile Deformation Behaviors in Ultrafine-Grained Aluminum, Acta Mater., 2005, 53, p 4019–4028CrossRef C. Yu, P. Kao, and C. Chang, Transition of Tensile Deformation Behaviors in Ultrafine-Grained Aluminum, Acta Mater., 2005, 53, p 4019–4028CrossRef
Metadaten
Titel
Formation of Al/(Al13Fe4 + Al2O3) Nano-composites via Mechanical Alloying and Friction Stir Processing
verfasst von
Ghasem Azimi-Roeen
Seyed Farshid Kashani-Bozorg
Martin Nosko
Štefan Nagy
Igor Maťko
Publikationsdatum
22.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3170-8

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Engineering and Performance 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.