Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 2/2020

04.12.2019

Formation of Austenite in Additively Manufactured and Post-Processed Duplex Stainless Steel Alloys

verfasst von: A. D. Iams, J. S. Keist, T. A. Palmer

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The additive manufacturing of duplex stainless steels has been limited by the inability to maintain a balanced ferrite/austenite microstructure. In order to investigate the impact of the complex thermal histories inherent to the additive manufacturing process on austenite fractions and morphology, a laser-based directed energy deposition process was used to fabricate lean (UNS S32101), standard (UNS S32205), and super (UNS S32507) duplex structures. In these structures, the austenite phase fractions ranged from 16.1 ± 1.1 pct in the lean, to 38.5 ± 1.6 pct in the standard, and 58.3 ± 0.1 pct in the super duplex stainless steel grades. While the overall austenite levels were comparable to those found in wrought alloys, the austenite fractions increased with build height as preheating from previously deposited material promoted the ferrite to austenite transformation. Of the austenite morphologies observed in each of the duplex stainless steel grades, intragranular austenite was dominant, comprising between 55 and 76 pct of the austenite present within each build. The intragranular austenite formed during reheating and its formation was enhanced by the presence of submicron inclusions which originated from the powder feedstock and served as heterogenous nucleation sites. After post-process hot isostatic pressing heat treatment, the austenite morphology became more similar in appearance to that observed in the wrought condition. The overall austenite fractions in the post-processed lean (28.2 ± 0.7 pct), standard (57.6 ± 0.2 pct), and super (66.5 ± 0.3 pct) duplex grades increased over their respective as-deposited conditions and became more uniform with changes in build height.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Sandvik Osprey (Neath, UK).
 
2
Luvak Laboratories (Boylston, US).
 
3
Thermo-Calc Software (Solna SE).
 
4
Malvern Panalytical Ltd. (Royston, UK).
 
5
Quintus Technologies AMD Application Center (Columbus, US).
 
6
GE Sensing & Inspection Technologies (Cincinnati, US).
 
7
Volume Graphics, Inc. (Heidelberg, DE).
 
8
LECO Corporation (Saint Joseph, US).
 
9
Nikon Corporation (Tokyo, JP).
 
10
ThermoFisher Scientific (Waltham, US).
 
11
Oxford Instruments (Abingdon, UK).
 
12
Malvern Panalytical Ltd. (Royston, UK).
 
Literatur
1.
Zurück zum Zitat A. Vinoth-Jebaraj, L. Ajaykumar, C.R. Deepak, and K. V. V. Aditya: J. Adv. Res., 2017, vol. 8, pp. 183–99. A. Vinoth-Jebaraj, L. Ajaykumar, C.R. Deepak, and K. V. V. Aditya: J. Adv. Res., 2017, vol. 8, pp. 183–99.
2.
Zurück zum Zitat Westinghouse Electric Company: Engineered Safety Features, AP1000 Design Control Document Revision 18, vol. 6, 2010. Westinghouse Electric Company: Engineered Safety Features, AP1000 Design Control Document Revision 18, vol. 6, 2010.
3.
Zurück zum Zitat I. Alvarez-Armas and S. Degallaix-Moreuil, eds.: Duplex Stainless Steels, John Wiley & Sons, New Jersey, 2013. I. Alvarez-Armas and S. Degallaix-Moreuil, eds.: Duplex Stainless Steels, John Wiley & Sons, New Jersey, 2013.
4.
Zurück zum Zitat R.N. Gunn: Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publishing, 1997. R.N. Gunn: Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publishing, 1997.
5.
Zurück zum Zitat G. Mohammed, M. Ishak, S. Aqida, and H. Abdulhadi: Metals (Basel)., 2017, vol. 7, p. 39. G. Mohammed, M. Ishak, S. Aqida, and H. Abdulhadi: Metals (Basel)., 2017, vol. 7, p. 39.
6.
Zurück zum Zitat A.J. Ramirez, J.C. Lippold, and S.D. Brandi: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1575–97. A.J. Ramirez, J.C. Lippold, and S.D. Brandi: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1575–97.
7.
Zurück zum Zitat C.M. Garzón and A.J. Ramirez: Acta Mater., 2006, 54(12), pp. 3321–3331. C.M. Garzón and A.J. Ramirez: Acta Mater., 2006, 54(12), pp. 3321–3331.
8.
Zurück zum Zitat J.W. Elmer, T.A. Palmer, and E.D. Specht: Metall. Mater. Trans. A, 2007, vol. 38, pp. 464–75. J.W. Elmer, T.A. Palmer, and E.D. Specht: Metall. Mater. Trans. A, 2007, vol. 38, pp. 464–75.
9.
Zurück zum Zitat N. Llorca-Isern, H. López-Luque, I. López-Jiménez, and M.V. Biezma: Mater. Charact., 2016, 112, pp. 20–9. N. Llorca-Isern, H. López-Luque, I. López-Jiménez, and M.V. Biezma: Mater. Charact., 2016, 112, pp. 20–9.
10.
Zurück zum Zitat T.H. Chen, K.L. Weng, and J.R. Yang: Mater. Sci. Eng. A, 2002, vol. 338, pp. 259–70. T.H. Chen, K.L. Weng, and J.R. Yang: Mater. Sci. Eng. A, 2002, vol. 338, pp. 259–70.
11.
Zurück zum Zitat A. Igual-Muñoz, J. García-Antón, J.L. Guiñón, and V. Pérez-Herranz: Corrosion, 2005, vol. 61, pp. 693–705. A. Igual-Muñoz, J. García-Antón, J.L. Guiñón, and V. Pérez-Herranz: Corrosion, 2005, vol. 61, pp. 693–705.
12.
Zurück zum Zitat J.Y. Maetz, T. Douillard, S. Cazottes, C. Verdu, and X. Kléber: Micron, 2016, 84, pp. 43–53. J.Y. Maetz, T. Douillard, S. Cazottes, C. Verdu, and X. Kléber: Micron, 2016, 84, pp. 43–53.
13.
Zurück zum Zitat K.M. Lee, H. Cho, and D.C. Choi: J. Alloys Compd. 1999, 285, 156–161. K.M. Lee, H. Cho, and D.C. Choi: J. Alloys Compd. 1999, 285, 156–161.
14.
Zurück zum Zitat R.B. Bhatt, H.S. Kamat, S.K. Ghosal, and P.K. De: JMEPEG, 1999, vol. 8, pp. 591–7. R.B. Bhatt, H.S. Kamat, S.K. Ghosal, and P.K. De: JMEPEG, 1999, vol. 8, pp. 591–7.
15.
Zurück zum Zitat V. Muthupandi, P. Bala-Srinivasan, S.K. Seshadri, and S. Sundaresan: Mater. Sci. Eng. A, 2003, vol. 358, pp. 9–16. V. Muthupandi, P. Bala-Srinivasan, S.K. Seshadri, and S. Sundaresan: Mater. Sci. Eng. A, 2003, vol. 358, pp. 9–16.
16.
Zurück zum Zitat V. Muthupandi, P. Bala-Srinivasan, V. Shankar, S.K. Seshadri, and S. Sundaresan: Mater. Lett., 2005, 59 (18), pp. 2305–2309. V. Muthupandi, P. Bala-Srinivasan, V. Shankar, S.K. Seshadri, and S. Sundaresan: Mater. Lett., 2005, 59 (18), pp. 2305–2309.
17.
Zurück zum Zitat H. Sieurin and R. Sandstrom: Mater. Sci. Eng. A, 2006, vol. 418, pp. 250–6. H. Sieurin and R. Sandstrom: Mater. Sci. Eng. A, 2006, vol. 418, pp. 250–6.
18.
Zurück zum Zitat J.M. Gomez de Salazar, A. Soria, and M.I. Barrena: J. Mater. Sci., 2007, vol. 42, pp. 4892–8. J.M. Gomez de Salazar, A. Soria, and M.I. Barrena: J. Mater. Sci., 2007, vol. 42, pp. 4892–8.
19.
Zurück zum Zitat E.M. Westin: Weld. World, 2010, vol. 54, pp. 308–21. E.M. Westin: Weld. World, 2010, vol. 54, pp. 308–21.
20.
Zurück zum Zitat A. Eghlimi, M. Shamanian, and K. Raeissi: Surf. Coat. Technol., 2014, 244, pp. 45–51. A. Eghlimi, M. Shamanian, and K. Raeissi: Surf. Coat. Technol., 2014, 244, pp. 45–51.
21.
Zurück zum Zitat L. Karlsson and J. Börjesson: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 318–23. L. Karlsson and J. Börjesson: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 318–23.
22.
Zurück zum Zitat Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and C. Zhou: Appl. Surf. Sci., 2017, vol. 404, pp. 110–28. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and C. Zhou: Appl. Surf. Sci., 2017, vol. 404, pp. 110–28.
23.
Zurück zum Zitat Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, and J. Li: Corros. Sci., 2012, vol. 65, pp. 472–80. Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, and J. Li: Corros. Sci., 2012, vol. 65, pp. 472–80.
24.
Zurück zum Zitat Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, and Y. Guo: Corros. Sci., 2012, vol. 62, pp. 42–50. Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, and Y. Guo: Corros. Sci., 2012, vol. 62, pp. 42–50.
25.
Zurück zum Zitat T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.
26.
Zurück zum Zitat K.D. Ramkumar, D. Mishra, B.G. Raj, M.K. Vignesh, G. Thiruvengatam, S.P. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A. Maximus: Mater. Des., 2015, vol. 66, pp. 356–65. K.D. Ramkumar, D. Mishra, B.G. Raj, M.K. Vignesh, G. Thiruvengatam, S.P. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A. Maximus: Mater. Des., 2015, vol. 66, pp. 356–65.
27.
Zurück zum Zitat V.A. Hosseini, S. Wessman, K. Hurtig, and L. Karlsson: Mater. Des., 2016, vol. 98, pp. 88–97. V.A. Hosseini, S. Wessman, K. Hurtig, and L. Karlsson: Mater. Des., 2016, vol. 98, pp. 88–97.
28.
Zurück zum Zitat J. Pekkarinen and V. Kujanpää: Phys. Procedia, 2010, vol. 5, pp. 517–23. J. Pekkarinen and V. Kujanpää: Phys. Procedia, 2010, vol. 5, pp. 517–23.
29.
Zurück zum Zitat A. Mourad, A. Khourshid, and T. Sharef: Mater. Sci. Eng. A, 2012, vol. 549, pp. 105–13. A. Mourad, A. Khourshid, and T. Sharef: Mater. Sci. Eng. A, 2012, vol. 549, pp. 105–13.
30.
Zurück zum Zitat Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, and J. Zhang: Appl. Surf. Sci., 2018, vol. 435, pp. 352–66. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, and J. Zhang: Appl. Surf. Sci., 2018, vol. 435, pp. 352–66.
31.
Zurück zum Zitat J.W. Elmer, S.M. Allen, and T.W. Eagar: Metall. Trans. A, 1989, vol. 20, pp. 2117–31. J.W. Elmer, S.M. Allen, and T.W. Eagar: Metall. Trans. A, 1989, vol. 20, pp. 2117–31.
32.
Zurück zum Zitat V.A. Hosseini, K. Hurtig, and L. Karlsson: Mater. Corros., 2017, vol. 68, pp. 405–15. V.A. Hosseini, K. Hurtig, and L. Karlsson: Mater. Corros., 2017, vol. 68, pp. 405–15.
33.
Zurück zum Zitat K.P. Davidson and S. Singamneni: Mater. Manuf. Process., 2016, vol. 31, pp. 1543–55. K.P. Davidson and S. Singamneni: Mater. Manuf. Process., 2016, vol. 31, pp. 1543–55.
34.
Zurück zum Zitat K.P. Davidson and S. Singamneni: Jom, 2017, vol. 69, pp. 569–74. K.P. Davidson and S. Singamneni: Jom, 2017, vol. 69, pp. 569–74.
35.
Zurück zum Zitat K. Saeidi, L. Kevetkova, F. Lofaj, and Z. Shen: Mater. Sci. Eng. A, 2016, vol. 665, pp. 59–65. K. Saeidi, L. Kevetkova, F. Lofaj, and Z. Shen: Mater. Sci. Eng. A, 2016, vol. 665, pp. 59–65.
36.
Zurück zum Zitat F. Hengsbach, P. Koppa, K. Duschik, M.J. Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K.-P. Hoyer, and M. Schaper: Mater. Des., 2017, 133, pp. 136–142. F. Hengsbach, P. Koppa, K. Duschik, M.J. Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K.-P. Hoyer, and M. Schaper: Mater. Des., 2017, 133, pp. 136–142.
37.
Zurück zum Zitat M. Eriksson, M. Lervåg, C. Sørensen, A. Robertstad, B.M. Brønstad, B. Nyhus, R. Aune, X. Ren, and O.M. Akselsen: MATEC Web of Conferences, 2018, vol. 188, pp. 1–8. M. Eriksson, M. Lervåg, C. Sørensen, A. Robertstad, B.M. Brønstad, B. Nyhus, R. Aune, X. Ren, and O.M. Akselsen: MATEC Web of Conferences, 2018, vol. 188, pp. 1–8.
38.
Zurück zum Zitat G. Posch, K. Chladil, and H. Chladil: Weld. World, 2017, vol. 61, pp. 873–82. G. Posch, K. Chladil, and H. Chladil: Weld. World, 2017, vol. 61, pp. 873–82.
39.
Zurück zum Zitat ASTM E1019: Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques, ASTM International, West Conshohocken, PA, 2018. ASTM E1019: Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques, ASTM International, West Conshohocken, PA, 2018.
40.
Zurück zum Zitat ASTM E1097: Standard Guide for Determination of Various Elements by Direct Current Plasma Atomic Emission Spectrometry, ASTM International, West Conshohocken, PA, 2012. ASTM E1097: Standard Guide for Determination of Various Elements by Direct Current Plasma Atomic Emission Spectrometry, ASTM International, West Conshohocken, PA, 2012.
41.
Zurück zum Zitat ASTM 276: Standard Specification for Stainless Steel Bars and Shapes, West Conshohocken, PA, 2017. ASTM 276: Standard Specification for Stainless Steel Bars and Shapes, West Conshohocken, PA, 2017.
42.
Zurück zum Zitat L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams, Academic Press, New York, 1970. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.
43.
Zurück zum Zitat N. Saunders and A. Peter-Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, New York, 1998. N. Saunders and A. Peter-Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, New York, 1998.
44.
Zurück zum Zitat H. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007. H. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007.
45.
Zurück zum Zitat Z.K. Liu: J. Phase Equilibria Diffus., 2009, vol. 30, pp. 517–34. Z.K. Liu: J. Phase Equilibria Diffus., 2009, vol. 30, pp. 517–34.
46.
Zurück zum Zitat ASTM B213: Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013. ASTM B213: Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013.
47.
Zurück zum Zitat ASTM B212: Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013. ASTM B212: Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013.
48.
Zurück zum Zitat ASTM B527: Standard Test Method for Determination of Tap Density of Metal Powders and Compounds, ASTM International, West Conshohocken, PA, 2015. ASTM B527: Standard Test Method for Determination of Tap Density of Metal Powders and Compounds, ASTM International, West Conshohocken, PA, 2015.
49.
Zurück zum Zitat Z.R. Khayat and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 718, pp. 123–34. Z.R. Khayat and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 718, pp. 123–34.
50.
Zurück zum Zitat J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit: J. Res. Natl. Inst. Stand. Technol., 2014, vol. 119, pp. 494–528. J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit: J. Res. Natl. Inst. Stand. Technol., 2014, vol. 119, pp. 494–528.
51.
Zurück zum Zitat A. Kisasoz, A. Karaaslan, and Y. Bayrak: Met. Sci. Heat Treat., 2016, vol. 58, pp. 9–12. A. Kisasoz, A. Karaaslan, and Y. Bayrak: Met. Sci. Heat Treat., 2016, vol. 58, pp. 9–12.
52.
Zurück zum Zitat ASTM E562: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM International, West Conshohocken, PA, 2011. ASTM E562: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM International, West Conshohocken, PA, 2011.
53.
Zurück zum Zitat S.D. Meredith, J.S. Zuback, J.S. Keist, and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 738, pp. 44–56. S.D. Meredith, J.S. Zuback, J.S. Keist, and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 738, pp. 44–56.
54.
Zurück zum Zitat ASTM E975: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International, West Conshohocken, PA, 2013. ASTM E975: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International, West Conshohocken, PA, 2013.
55.
Zurück zum Zitat T.A. Palmer, J.W. Elmer, and J. Wong: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 159–71. T.A. Palmer, J.W. Elmer, and J. Wong: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 159–71.
56.
Zurück zum Zitat T.A. Palmer, J.W. Elmer, and S.S. Babu: Mater. Sci. Eng. A, 2004, vol. 374, pp. 307–21. T.A. Palmer, J.W. Elmer, and S.S. Babu: Mater. Sci. Eng. A, 2004, vol. 374, pp. 307–21.
57.
Zurück zum Zitat Z. Zhang, H. Jing, L. Xu, Y. Han, G. Li, and L. Zhao: J. Mater. Eng. Perform., 2017, vol. 26, pp. 134–50. Z. Zhang, H. Jing, L. Xu, Y. Han, G. Li, and L. Zhao: J. Mater. Eng. Perform., 2017, vol. 26, pp. 134–50.
58.
Zurück zum Zitat J. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700. J. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700.
59.
Zurück zum Zitat S. Atamert and J.E. King: Zeitschrift für Met., 1991, vol. 82, pp. 230–9. S. Atamert and J.E. King: Zeitschrift für Met., 1991, vol. 82, pp. 230–9.
60.
Zurück zum Zitat V. Manvatkar, A. De, and T. DebRoy: Mater. Sci. Technol., 2015, vol. 31, pp. 924–30. V. Manvatkar, A. De, and T. DebRoy: Mater. Sci. Technol., 2015, vol. 31, pp. 924–30.
61.
Zurück zum Zitat Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and J. Zhang: Appl. Surf. Sci., 2017, 394, pp. 297–314. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and J. Zhang: Appl. Surf. Sci., 2017, 394, pp. 297–314.
62.
Zurück zum Zitat Y. Guo, T. Sun, J. Hu, Y. Jiang, L. Jiang, and J. Li: Alloy. Compd., 2016, vol. 658, pp. 1031–40. Y. Guo, T. Sun, J. Hu, Y. Jiang, L. Jiang, and J. Li: Alloy. Compd., 2016, vol. 658, pp. 1031–40.
63.
Zurück zum Zitat A.J. Ramirez, S.D. Brandi, and J.C. Lippold: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 301–13. A.J. Ramirez, S.D. Brandi, and J.C. Lippold: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 301–13.
64.
Zurück zum Zitat Z. Zhang, H. Jing, L. Xu, Y. Han, and L. Zhao: Corros. Sci., 2017, 120, pp. 194–210. Z. Zhang, H. Jing, L. Xu, Y. Han, and L. Zhao: Corros. Sci., 2017, 120, pp. 194–210.
65.
Zurück zum Zitat E. Hämäläinen, A. Laitinen, H. Hänninen, and J. Liimatainen: Mater. Sci. Technol., 1997, vol. 13, pp. 103–9. E. Hämäläinen, A. Laitinen, H. Hänninen, and J. Liimatainen: Mater. Sci. Technol., 1997, vol. 13, pp. 103–9.
66.
Zurück zum Zitat A. Laitinen and H. Hanninen: Corrosion, 1996, vol. 52, pp. 295–306. A. Laitinen and H. Hanninen: Corrosion, 1996, vol. 52, pp. 295–306.
67.
Zurück zum Zitat B.M. Morrow, T.J. Lienert, C.M. Knapp, J.O. Sutton, M.J. Brand, R.M. Pacheco, V. Livescu, J.S. Carpenter, and G.T. Gray: Metall. Mater. Trans. A, 2018, 49, pp. 3637-3650. B.M. Morrow, T.J. Lienert, C.M. Knapp, J.O. Sutton, M.J. Brand, R.M. Pacheco, V. Livescu, J.S. Carpenter, and G.T. Gray: Metall. Mater. Trans. A, 2018, 49, pp. 3637-3650.
68.
Zurück zum Zitat E.C. Bain and H.W. Paxton: Alloying Elements in Steel, American Society for Metals, Metals Park, Ohio, 1966. E.C. Bain and H.W. Paxton: Alloying Elements in Steel, American Society for Metals, Metals Park, Ohio, 1966.
Metadaten
Titel
Formation of Austenite in Additively Manufactured and Post-Processed Duplex Stainless Steel Alloys
verfasst von
A. D. Iams
J. S. Keist
T. A. Palmer
Publikationsdatum
04.12.2019
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 2/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05562-w

Weitere Artikel der Ausgabe 2/2020

Metallurgical and Materials Transactions A 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.