Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2018

01.08.2018 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Formation of the Structure, Phase Composition, and Properties in High-Strength Titanium Alloy upon Isothermal and Thermomechanical Treatment

verfasst von: A. G. Illarionov, A. V. Korelin, A. A. Popov, S. M. Illarionova, O. A. Elkina

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transmission electron microscopy, X-ray diffraction analysis, durometry, and mechanical tensile and impact toughness tests were used to study changes in the structure, phase composition, and mechanical properties in a high-strength VT22I titanium alloy (Ti–3Al–5Mo–5V–1Cr–1Fe) upon isothermal and thermomechanical treatments, including warm rolling and aging. It has been found that the decomposition of the β solid solution in an alloy preliminarily heated in the β region (Тpt + 50°C) after isothermal treatment at 650°C for 1 and 4 min is accompanied by the formation of an intermediate α'' phase; upon holding for 20 min, an equilibrium α phase precipitates. The А7В-type ordering processes, where β stabilizers and aluminum can serve as a B element, are possible and, upon final cooling, in water, the formation of an athermal ω phase can take place at the initial stages of decomposition. It has been shown that the warm rolling of the alloy at 650°C accelerates the processes of the decomposition of the metastable β solid solution, contributes to the refinement of the arising α precipitates, and suppresses the formation of the athermal ω phase upon cooling compared to the similar isothermal treatment without deformation. A regime of a thermomechanical treatment that provides the high mechanical properties required to fabricate elastic structural components has been proposed for this alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium alloys. Composition, structure, properties. A Handbook (VILS–MATI, Moscow, 2009) [in Russian]. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium alloys. Composition, structure, properties. A Handbook (VILS–MATI, Moscow, 2009) [in Russian].
2.
Zurück zum Zitat I. S. Pol’kin, Strengthening heat treatment of titanium alloys (Metallurgiya, Moscow, 1984) [in Russian]. I. S. Pol’kin, Strengthening heat treatment of titanium alloys (Metallurgiya, Moscow, 1984) [in Russian].
3.
Zurück zum Zitat M. Yu. Kollerov, M. B. Afonina, E. V. Shinaeva, and I. A. Sharonov, “Effect of the quenching temperature on the structure and deformation mechanism of a VT22I alloy,” Russ. Metall. (Metally.) 2010, 62–66 (2010).CrossRef M. Yu. Kollerov, M. B. Afonina, E. V. Shinaeva, and I. A. Sharonov, “Effect of the quenching temperature on the structure and deformation mechanism of a VT22I alloy,” Russ. Metall. (Metally.) 2010, 62–66 (2010).CrossRef
4.
Zurück zum Zitat A. I. Khorev, “Fundamental and applied works on titanium alloys and perspective directions of their development,” Tekhnol. Mashinostr., No. 11, 5–10 (2014). A. I. Khorev, “Fundamental and applied works on titanium alloys and perspective directions of their development,” Tekhnol. Mashinostr., No. 11, 5–10 (2014).
5.
Zurück zum Zitat A. G. Illarionov, A. A. Popov, A. V. Korelin, and E. V. Golubeva, “The effect of hot deformation on the formation of the structure and properties of semi-finished products from titanium alloy Ti–10% V–2% Fe–3% Al,” Metalloved. Term. Obrab. Met. No. 11, 13–18 (2000). A. G. Illarionov, A. A. Popov, A. V. Korelin, and E. V. Golubeva, “The effect of hot deformation on the formation of the structure and properties of semi-finished products from titanium alloy Ti–10% V–2% Fe–3% Al,” Metalloved. Term. Obrab. Met. No. 11, 13–18 (2000).
6.
Zurück zum Zitat A. A. Popov, A. G. Illarionov, and A. V. Korelin, “Formation of the structure and properties of titanium alloys of the transition class after hot rolling,” Metalloved. Term. Obrab. Met. No. 9, 16–18 (2000). A. A. Popov, A. G. Illarionov, and A. V. Korelin, “Formation of the structure and properties of titanium alloys of the transition class after hot rolling,” Metalloved. Term. Obrab. Met. No. 9, 16–18 (2000).
7.
Zurück zum Zitat V. L. Kolmogorov, A. A. Popov, A. V. Serebryakov, L. I. Anisomova, Yu. I. Spasskii, and N. N. Bondaryuk, “Plastohydrodynamic friction effect in hot rolling of the VT22 alloy,” Sov. J. Friction Wear 5, 127–130 (1984). V. L. Kolmogorov, A. A. Popov, A. V. Serebryakov, L. I. Anisomova, Yu. I. Spasskii, and N. N. Bondaryuk, “Plastohydrodynamic friction effect in hot rolling of the VT22 alloy,” Sov. J. Friction Wear 5, 127–130 (1984).
8.
Zurück zum Zitat A. Illarionov, I. Narygina, and A. Popov, “The effect of cold deformation on structure and deformation induced phase transformations in quenched (α+β)-alloys of transition class,” Ti 2011 - Proceedings of the 12th World Conference on Titanium (China National Convention Center (CNCC), Beijing, 2012), Vol. 1, pp. 709–713. A. Illarionov, I. Narygina, and A. Popov, “The effect of cold deformation on structure and deformation induced phase transformations in quenched (α+β)-alloys of transition class,” Ti 2011 - Proceedings of the 12th World Conference on Titanium (China National Convention Center (CNCC), Beijing, 2012), Vol. 1, pp. 709–713.
9.
Zurück zum Zitat A. G. Illarionov, A. A. Popov, M. Yu. Kollerov, and A. V. Korelin, “Effect of aging on the structure and properties of cold-worked VT22I and Ti-10-2-3 hydrogenated alloys,” Phys Met. Metallogr. 89, 563 (2000). A. G. Illarionov, A. A. Popov, M. Yu. Kollerov, and A. V. Korelin, “Effect of aging on the structure and properties of cold-worked VT22I and Ti-10-2-3 hydrogenated alloys,” Phys Met. Metallogr. 89, 563 (2000).
10.
Zurück zum Zitat A. A. Popov, “Features of the decay of a metastable β phase in titanium alloys of the transition class under plastic deformation,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 1, 36–42 (1998). A. A. Popov, “Features of the decay of a metastable β phase in titanium alloys of the transition class under plastic deformation,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 1, 36–42 (1998).
11.
Zurück zum Zitat O. S. Korobov, “Regularities of phase transformations with aging α + β- and pseudo-β-titanium alloys,” Titan, No. 1, 30–34 (1993). O. S. Korobov, “Regularities of phase transformations with aging α + β- and pseudo-β-titanium alloys,” Titan, No. 1, 30–34 (1993).
12.
Zurück zum Zitat U., Zwicker, Titan und Titanlegierungen (Springer, Berlin, 1974; Metallurgiya, Moscow, 1979). U., Zwicker, Titan und Titanlegierungen (Springer, Berlin, 1974; Metallurgiya, Moscow, 1979).
13.
Zurück zum Zitat E. W. Collings, The Physical Metallurgy of Titanium Alloys (Am. Soc. for Metals, Metals Park, Ohio, 1984; Metallurgiya, Moscow, 1988). E. W. Collings, The Physical Metallurgy of Titanium Alloys (Am. Soc. for Metals, Metals Park, Ohio, 1984; Metallurgiya, Moscow, 1988).
14.
Zurück zum Zitat A. A. Popov, L. I. Anisimova, and V. D. Kibal’nik, “Investigation of the decomposition of the metastable β phase during the continuous heating of titanium alloys,” Fiz. Met. Metalloved. 52, 829–837 (1981). A. A. Popov, L. I. Anisimova, and V. D. Kibal’nik, “Investigation of the decomposition of the metastable β phase during the continuous heating of titanium alloys,” Fiz. Met. Metalloved. 52, 829–837 (1981).
15.
Zurück zum Zitat Electron Microscopy of Thin Crystals, Ed. by P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan (Butterworths, London, 1965; Mir, Moscow, 1968). Electron Microscopy of Thin Crystals, Ed. by P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan (Butterworths, London, 1965; Mir, Moscow, 1968).
16.
Zurück zum Zitat A. A. Popov, V. A. Beloglazov, L. I. Anisimova, and A. A. Arkhangel’skaya, “On the formation of an ordered structure upon the decomposition of the metastable beta phase in titanium alloys,” Metallofizika 8, 80–84 (1986). A. A. Popov, V. A. Beloglazov, L. I. Anisimova, and A. A. Arkhangel’skaya, “On the formation of an ordered structure upon the decomposition of the metastable beta phase in titanium alloys,” Metallofizika 8, 80–84 (1986).
17.
Zurück zum Zitat B. Mozer, L. A. Bendersky, and W. J. Boettinger, “Neutron powder diffraction study of the orthorhombic Ti2AlNb phase,” Scr. Metall. Mater. 24, 2363–2368 (1990).CrossRef B. Mozer, L. A. Bendersky, and W. J. Boettinger, “Neutron powder diffraction study of the orthorhombic Ti2AlNb phase,” Scr. Metall. Mater. 24, 2363–2368 (1990).CrossRef
18.
Zurück zum Zitat E. A. L’vova and V. G. Cheremnykh, “Stages of martensitic transformation induced by plastic deformation in titanium alloys,” Fiz. Met. Metalloved. 63, 525–533 (1987) E. A. L’vova and V. G. Cheremnykh, “Stages of martensitic transformation induced by plastic deformation in titanium alloys,” Fiz. Met. Metalloved. 63, 525–533 (1987)
19.
Zurück zum Zitat A. A. Popov, “Phase transformations and heat treatment of (α + β)-titanium alloys,” Metalloved. Term. Obrab. Met., No. 10, 21–23 (1995). A. A. Popov, “Phase transformations and heat treatment of (α + β)-titanium alloys,” Metalloved. Term. Obrab. Met., No. 10, 21–23 (1995).
20.
Zurück zum Zitat O. M. Ivasishin, P. E. Markovskii, Yu. V. Matviichuk, S. L. Semyatin, and Ch. Vard, “Comparative analysis of high-strength states in titanium alloys,” Titan, No. 2, 24–37 (2004). O. M. Ivasishin, P. E. Markovskii, Yu. V. Matviichuk, S. L. Semyatin, and Ch. Vard, “Comparative analysis of high-strength states in titanium alloys,” Titan, No. 2, 24–37 (2004).
21.
Zurück zum Zitat A. G. Illarionov, I. V. Narygina, M. S. Karabanalov, S. L. Demakov, A. A. Popov, and O. A. Elkina, “Structural and phase transformations in a titanium alloy of the transition class under the effect of deformation,” Phys. Met. Metallogr. 110, 279–288 (2010).CrossRef A. G. Illarionov, I. V. Narygina, M. S. Karabanalov, S. L. Demakov, A. A. Popov, and O. A. Elkina, “Structural and phase transformations in a titanium alloy of the transition class under the effect of deformation,” Phys. Met. Metallogr. 110, 279–288 (2010).CrossRef
22.
Zurück zum Zitat A. A. Il’in, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys (Nauka, Moscow, 1994) [in Russian]. A. A. Il’in, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys (Nauka, Moscow, 1994) [in Russian].
23.
Zurück zum Zitat S. Ya. Betsofen, A. A. Il’in, S. V. Skvortsova, A. A. Filatov, and D. A. Dzunovich, “Formation of texture and anisotropy of mechanical properties in titanium-alloy sheets,” Russ. Metall. (Metally) No. 2, 139–146 (2005). S. Ya. Betsofen, A. A. Il’in, S. V. Skvortsova, A. A. Filatov, and D. A. Dzunovich, “Formation of texture and anisotropy of mechanical properties in titanium-alloy sheets,” Russ. Metall. (Metally) No. 2, 139–146 (2005).
24.
Zurück zum Zitat K. Faller, “Titanium springs make production car debut,” Springs 40, 25 (2001). K. Faller, “Titanium springs make production car debut,” Springs 40, 25 (2001).
25.
Zurück zum Zitat X. Zhao, S. Sun, L. Wang, Y. Liu, J. He, and G. Tu, “A new low-cost β-type high-strength titanium alloy with lower alloying percentage for spring applications,” Mater. Trans. 55, 1455–1459 (2014).CrossRef X. Zhao, S. Sun, L. Wang, Y. Liu, J. He, and G. Tu, “A new low-cost β-type high-strength titanium alloy with lower alloying percentage for spring applications,” Mater. Trans. 55, 1455–1459 (2014).CrossRef
26.
Zurück zum Zitat J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, 1281–1303 (2015).CrossRef J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, 1281–1303 (2015).CrossRef
27.
Zurück zum Zitat W. A. Reinsch and H. W. Rasenberg, “Three recent developments in titanium alloys,” Met. Prog. 117, 64–69 (1980). W. A. Reinsch and H. W. Rasenberg, “Three recent developments in titanium alloys,” Met. Prog. 117, 64–69 (1980).
Metadaten
Titel
Formation of the Structure, Phase Composition, and Properties in High-Strength Titanium Alloy upon Isothermal and Thermomechanical Treatment
verfasst von
A. G. Illarionov
A. V. Korelin
A. A. Popov
S. M. Illarionova
O. A. Elkina
Publikationsdatum
01.08.2018
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2018
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18080033

Weitere Artikel der Ausgabe 8/2018

Physics of Metals and Metallography 8/2018 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Scandium-Based Hexagonal-Closed Packed Multi-Component Alloys