Skip to main content

2016 | OriginalPaper | Buchkapitel

Foundations of Mathematics: Reliability and Clarity: The Explanatory Role of Mathematical Induction

verfasst von : John T. Baldwin

Erschienen in: Logic, Language, Information, and Computation

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

While studies in the philosophy of mathematics often emphasize reliability over clarity, much study of the explanatory power of proof errs in the other direction. We argue that Hanna’s distinction between ‘formal’ and ‘acceptable’ proof misunderstands the role of proof in Hilbert’s program. That program explicitly seeks the existence of a justification; the notion of proof is not intended to represent the notion of a ‘good’ proof. In particular, the studies reviewed here of mathematical induction miss the explanatory heart of such a proof; how to proceed from suggestive example to universal rule. We discuss the role of algebra in attaining the goal of generalizability and abstractness often taken as keys to being explanatory. In examining several proofs of the closed form for the sum of the first n natural numbers, we expose the hidden inductive definitions in the ‘immediate arguments’ such as Gauss’s proof. This connection with inductive definition leads to applications far beyond verifying numerical identities. We discuss some objections, which we find more basic than those in the literature, to Lange’s general argument that proofs by mathematical induction are not explanatory. We conclude by arguing that whether a proof is explanatory depends on a context of clear hypothesis and understanding what is supposedly explained to who.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Page 26 of [Cof91].
 
2
Section 3 of [HM05] give several specific examples of mathematicians using ‘explain’ in various senses.
 
3
He and another U.I.C. mathematician, Neil Rickert, once held the record for the largest pair of twin primes.
 
4
I added the parenthetical descriptions. And, I modified the question because as originally phrased, the first question is not asked. But the explanations proffered by Hanna all deal with it.
 
5
There are various logics for studying this topic [Lin14]; but they are not considered in the papers under discussion.
 
6
In the paper Hanna draws on, Steiner [Ste78] refers to Quine’s set theory book [Qui69].
 
7
While this statement is appealing to students, a more formal version with the same proof is: How many edges are there in the complete symmetric graph on n vertices?.
 
8
This assertion of course depends on where I begin my arithmetic. There is no trace of arithmetic, if my assumption is that \((N,+,\times )\) is a semi-ring (ring without additive inverse). But there is if I go back one step further and define multiplication inductively from addition.
 
9
There is also a geometrical picture to understand the algebra in the numerator of this calculation. Represent \(n(n+1)\) by an n high by \(n+1\) wide rectangle. Then to add \(2(n+1)\), place two 1 by n strips on top of the rectangle.
 
10
Paul Sally presented this argument at a University of Chicago class for high school teachers on Aug. 3/4, 2012. Doubtless, the approach is old; the use of telescoping series dates at least to the Bernoulli’s, Euler and Goldbach [BVP06]. Sally was not only a distinguished researcher in p-adic analysis and representation theory but a national leader in Mathematics Education.
 
11
A set X is defined by generalized inductive definition if there is rule assigning to each finite subset \(X_0\) of X some larger set \(X_0'\) (the closure of \(X_0\)) and for each \(X_0 \subset X\), \(X_0' \subset X\). This notion is given a more inductive format if one starts with a set Y and successively closes it to obtain X [Sho67].
 
12
We take the version form [Mar02] but similar accounts can be found in any modern logic text.
 
13
Particularly relevant is the recognition by Wysocki [Wys] and Cariani [Car16] that the basic thrust of up versus down induction breaks down for argument based on generalized induction definition (such as induction of formulas or closing a subset of a group G to a subgroup of G).
 
14
This ignores, of course, the many uses of mathematical induction to prove P(n) and for each \(k\ge n\), \(P(k) \rightarrow P(k+1)\) then for all \(k\ge n\), P(k). His argument could be complicated to handle this case as well as it does the one it explicitly addresses, but he doesn’t even consider such situations.
 
15
Baker [Bak10] notes this objection but does not develop it.
 
16
If one were to develop this argument in first order logic, Q would be a formula. However, in the spirit of the general discussion of induction we describe here informal mathematical arguments.
 
17
Here, Q is the set of possible coordinatizations.
 
18
In fact, Hanna’s article in an educational journal reflects the common use of Gauss’ proof for future American teachers of middle school mathematics. The goal of the activity is not understanding the step from example to universal but just some notion of justification.
 
Literatur
[Bal15]
Zurück zum Zitat Baldwin, J.T.: Formalization Without Foundationalism; Model Theory and the Philosophy of Mathematics Practice. Book manuscript available on request (2015) Baldwin, J.T.: Formalization Without Foundationalism; Model Theory and the Philosophy of Mathematics Practice. Book manuscript available on request (2015)
[Bur10]
Zurück zum Zitat Burgess, J.P.: Putting structuralism in its place. Preprint (2010) Burgess, J.P.: Putting structuralism in its place. Preprint (2010)
[BVP06]
Zurück zum Zitat Bibiloni, L., Viader, P., Paradís, J.: On a series of Goldbach and Euler. Bull. AMS 113, 206–221 (2006)MathSciNetMATH Bibiloni, L., Viader, P., Paradís, J.: On a series of Goldbach and Euler. Bull. AMS 113, 206–221 (2006)MathSciNetMATH
[Car16]
Zurück zum Zitat Cariani, F.: Mathematical induction and explanatory value in mathematics. Preprint (2016) Cariani, F.: Mathematical induction and explanatory value in mathematics. Preprint (2016)
[Cof91]
Zurück zum Zitat Coffa, A.: The Semantic Traditin from Kant to Carnap: To the Vienna Station. Cambridge University Press, Cambridge (1991)CrossRef Coffa, A.: The Semantic Traditin from Kant to Carnap: To the Vienna Station. Cambridge University Press, Cambridge (1991)CrossRef
[Ded63]
Zurück zum Zitat Dedekind, R.: Essays on the Theory of Numbers. Dover, New York (1963). As first published by Open Court Publications 1901: first German 1888thMATH Dedekind, R.: Essays on the Theory of Numbers. Dover, New York (1963). As first published by Open Court Publications 1901: first German 1888thMATH
[Han90]
Zurück zum Zitat Hanna, G.: Some pedagogical aspects of proof. Interchange 21, 6–13 (1990)CrossRef Hanna, G.: Some pedagogical aspects of proof. Interchange 21, 6–13 (1990)CrossRef
[Har15]
Zurück zum Zitat Harris, M.: Mathematics Without Apologies: Portrait of a Problematic Vocation. Princeton University Press, Princeton (2015)CrossRefMATH Harris, M.: Mathematics Without Apologies: Portrait of a Problematic Vocation. Princeton University Press, Princeton (2015)CrossRefMATH
[HM05]
Zurück zum Zitat Hafner, J., Mancosu, P.: The varieties of mathematical explanation. In: Mancosu, P., Jørgensen, K.F., Pedersen, S. (eds.) Visualization, Explanation, and Reasoning Styles in Mathematics. Synthese Library, vol. 327, pp. 215–250. Springer, Netherlands (2005)CrossRef Hafner, J., Mancosu, P.: The varieties of mathematical explanation. In: Mancosu, P., Jørgensen, K.F., Pedersen, S. (eds.) Visualization, Explanation, and Reasoning Styles in Mathematics. Synthese Library, vol. 327, pp. 215–250. Springer, Netherlands (2005)CrossRef
[Lan]
Zurück zum Zitat Lange, A.M.: Explanation by induction. Preprint Lange, A.M.: Explanation by induction. Preprint
[Lan09]
[Man08]
Zurück zum Zitat Mancosu, P.: Mathematical explanation: why it matters. In: Mancosu, P. (ed.) The Philosophy of Mathematical Practice, pp. 134–150. Oxford University Press, Oxford (2008)CrossRef Mancosu, P.: Mathematical explanation: why it matters. In: Mancosu, P. (ed.) The Philosophy of Mathematical Practice, pp. 134–150. Oxford University Press, Oxford (2008)CrossRef
[Mar02]
Zurück zum Zitat Marker, D.: Model Theory: An Introduction. Graduate Texts in Mathematics, vol. 217. Springer, New York (2002)MATH Marker, D.: Model Theory: An Introduction. Graduate Texts in Mathematics, vol. 217. Springer, New York (2002)MATH
[Qui69]
Zurück zum Zitat Quine, W.V.O.: Set Theory and Its Logic. Harvard, Cambridge (1969)MATH Quine, W.V.O.: Set Theory and Its Logic. Harvard, Cambridge (1969)MATH
[RK87]
Zurück zum Zitat Resnik, M., Kushner, D.: Explanation, independence, and realism in mathematics. Ann. Math. Log. 38, 141–158 (1987)MathSciNetMATH Resnik, M., Kushner, D.: Explanation, independence, and realism in mathematics. Ann. Math. Log. 38, 141–158 (1987)MathSciNetMATH
[Sho67]
Zurück zum Zitat Shoenfield, J.: Mathematical Logic. Addison-Wesley, Reading (1967)MATH Shoenfield, J.: Mathematical Logic. Addison-Wesley, Reading (1967)MATH
[Tap05]
Zurück zum Zitat Tappenden, J.: Proof style and understanding in mathematics I: visualization, unification and axiom choice. In: Mancosu, P., Jørgensen, K.F., Pedersen, S. (eds.) Visualization, Explanation, and Reasoning Styles in Mathematics. Synthese Library, vol. 327, pp. 147–214. Springer, Netherlands (2005)CrossRef Tappenden, J.: Proof style and understanding in mathematics I: visualization, unification and axiom choice. In: Mancosu, P., Jørgensen, K.F., Pedersen, S. (eds.) Visualization, Explanation, and Reasoning Styles in Mathematics. Synthese Library, vol. 327, pp. 147–214. Springer, Netherlands (2005)CrossRef
[Wys]
Zurück zum Zitat Wysocki, T.: Mathematical induction, grounding, and causal explanation. Presentation at APA meeting Chicago, March 2016 Wysocki, T.: Mathematical induction, grounding, and causal explanation. Presentation at APA meeting Chicago, March 2016
Metadaten
Titel
Foundations of Mathematics: Reliability and Clarity: The Explanatory Role of Mathematical Induction
verfasst von
John T. Baldwin
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-52921-8_5