Skip to main content
Erschienen in: Computational Mechanics 3/2018

30.11.2017 | Original Paper

Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

verfasst von: Matthias Leuschner, Felix Fritzen

Erschienen in: Computational Mechanics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The first node according to the node numbering of the reference element Z, i.e., if \(\underline{\alpha }\) is the zero vector.
 
2
Here, the fact is considered that \(n_1, \ldots , n_d\) are even (cf. Sect. 2.2).
 
3
The index \( i^*\in \left\{ 1,\ldots ,n\right\} \) depends on the exact choice of the array representation in Sect. 2.6 and is uniquely determined by the requirement \( \mathscr {F}\left( \left[ \,{\mathcal {I}}\,\right] \right) \equiv 1 \) in view of (20). The DFT is generally defined such that \( {\varvec{x}}^{\langle i^*\rangle } \) corresponds to the first entry (with respect to all dimensions) of the input array. E.g., in the array representation of our implementation, this first entry corresponds to the first corner of the RVE \( (i^*=c_1) \).
 
4
The confinement to isotropic (local) constitutive relations is made for simplicity but does not reflect a restriction of the FANS scheme.
 
5
An assumption of this kind corresponds to a necessary Dirichlet condition that renders the boundary value problem well-defined.
 
6
With the confinement to the local constitutive behavior specified by Fourier’s law (22), the effective constitutive relation is expressed by \( \bar{{\varvec{q}}} = - \bar{{\varvec{\kappa }}} \bar{{\varvec{g}}} \). The global conductivity \( \bar{{\varvec{\kappa }}}\in Sym({\mathbb {R}}^d) \) is a positive semidefinite second-order tensor, which is in general anisotropic despite the fact that the local conductivity is assumed to be isotropic at all positions \( {\varvec{x}}\in \varOmega \). Obviously, this type of global constitutive behavior is independent of the macroscopic temperature \( \bar{\theta } \), which can therefore assume arbitrary values in the present case. However, \(\bar{\theta }\) needs to be imposed to the microscopic problem when temperature-dependent conductivities are incorporated.
 
7
In Eq. (28) it is exploited that \( {\underline{\underline{{\mathcal {P}}}}}^\mathsf{T} \underline{f} = \underline{0} \) holds, which is due to the assumed absence of heat sources.
 
8
The gradient stencil defined in (46) is newly introduced for thermal problems here. Its Fourier space representation in (47) is inspired by results in [36] but is oriented rather to standard FE expressions than to formulations proposed in the literature on Fourier-based homogenization.
 
9
The FANS fundamental solution is always computed using full integration.
 
10
By exploiting the superposition principle, the number of DFTs can be reduced from \( 2^dd \) to \( 2^d \).
 
11
Aside from the characteristic length \(l_\mathrm{c}\), the Fourier space expression of the error measure from Sect. 2.4 in [31] has been corrected by the factor \( 2 \pi \sqrt{n} \) in Eq. (52). Without this correction, a fixed error tolerance would be hit earlier when the discretization is refined for a given problem.
 
12
The closed-form solution field is not only divergence-free, but also curl-free within both phases. Hence it is only applicable to heat conduction problems if both phases are isotropic. Note that the necessity to numerically compute the Jacobian elliptic delta function at each discretization point makes the closed-form solution computationally more demanding than FANS. To facilitate reproduction of our results, we mention a minor error in [32]: Both denominators in Eq. (3.5) must be replaced by their square roots.
 
13
A violation of the HS bounds would of course not contradict the validity of the numerical results, but would indicate that the considered medium has anisotropy which is not negligible.
 
14
Otherwise they loose their sparsity and, thus, efficiency.
 
Literatur
1.
Zurück zum Zitat Arbenz P, van Lenthe GH, Mennel U, Müller R, Sala M (2008) A scalable multi-level preconditioner for matrix-free \(\upmu \)-finite element analysis of human bone structures. Int J Numer Methods Eng 73(7):927–947MathSciNetCrossRefMATH Arbenz P, van Lenthe GH, Mennel U, Müller R, Sala M (2008) A scalable multi-level preconditioner for matrix-free \(\upmu \)-finite element analysis of human bone structures. Int J Numer Methods Eng 73(7):927–947MathSciNetCrossRefMATH
2.
Zurück zum Zitat Bornert M, Bretheau T, Gilormini P, Jeulin D, Michel J-C, Moulinec H, Suquet P, Zaoui A (2001) Homogénéisation en mécanique des matériaux 1. Hermes Science Publications, Cardiff Bornert M, Bretheau T, Gilormini P, Jeulin D, Michel J-C, Moulinec H, Suquet P, Zaoui A (2001) Homogénéisation en mécanique des matériaux 1. Hermes Science Publications, Cardiff
3.
Zurück zum Zitat Brisard S (2017) Reconstructing displacements from the solution to the periodic Lippmann–Schwinger equation discretized on a uniform grid. Int J Numer Methods Eng 109(4):459–486MathSciNetCrossRef Brisard S (2017) Reconstructing displacements from the solution to the periodic Lippmann–Schwinger equation discretized on a uniform grid. Int J Numer Methods Eng 109(4):459–486MathSciNetCrossRef
4.
Zurück zum Zitat Brisard S, Dormieux L (2010) FFT-based methods for the mechanics of composites: a general variational framework. Comput Mater Sci 49(3):663–671CrossRef Brisard S, Dormieux L (2010) FFT-based methods for the mechanics of composites: a general variational framework. Comput Mater Sci 49(3):663–671CrossRef
5.
Zurück zum Zitat Brisard S, Dormieux L (2012) Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites. Comput Methods Appl Mech Eng 217–220:197–212MathSciNetCrossRefMATH Brisard S, Dormieux L (2012) Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites. Comput Methods Appl Mech Eng 217–220:197–212MathSciNetCrossRefMATH
6.
7.
Zurück zum Zitat Dumontet H (1983) Homogénéisation par développements en séries de Fourier. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 296:1625–1628MathSciNetMATH Dumontet H (1983) Homogénéisation par développements en séries de Fourier. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 296:1625–1628MathSciNetMATH
8.
9.
Zurück zum Zitat Dvorak GJ, Benveniste Y (1992) On transformation strains and uniform fields in multiphase elastic media. Proc R Soc Lond A Math Phys Eng Sci 437:291–310MathSciNetCrossRefMATH Dvorak GJ, Benveniste Y (1992) On transformation strains and uniform fields in multiphase elastic media. Proc R Soc Lond A Math Phys Eng Sci 437:291–310MathSciNetCrossRefMATH
10.
Zurück zum Zitat Eshelby J D (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396MathSciNetCrossRefMATH Eshelby J D (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396MathSciNetCrossRefMATH
11.
Zurück zum Zitat Feyel F, Chaboche J-L (2000) \(\text{ FE }^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330CrossRefMATH Feyel F, Chaboche J-L (2000) \(\text{ FE }^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330CrossRefMATH
12.
Zurück zum Zitat Frigo M, Johnson S G (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231 Special issue on “Program Generation, Optimization, and Platform Adaptation”CrossRef Frigo M, Johnson S G (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231 Special issue on “Program Generation, Optimization, and Platform Adaptation”CrossRef
13.
Zurück zum Zitat Fritzen F, Böhlke T (2011) Nonuniform transformation field analysis of materials with morphological anisotropy. Compos Sci Technol 71(4):433–442CrossRef Fritzen F, Böhlke T (2011) Nonuniform transformation field analysis of materials with morphological anisotropy. Compos Sci Technol 71(4):433–442CrossRef
14.
Zurück zum Zitat Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154MathSciNetCrossRefMATH Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154MathSciNetCrossRefMATH
15.
Zurück zum Zitat Fritzen F, Leuschner M (2015) Nonlinear reduced order homogenization of materials including cohesive interfaces. Comput Mech 56(1):131–151MathSciNetCrossRefMATH Fritzen F, Leuschner M (2015) Nonlinear reduced order homogenization of materials including cohesive interfaces. Comput Mech 56(1):131–151MathSciNetCrossRefMATH
16.
Zurück zum Zitat Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217MathSciNetCrossRef Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217MathSciNetCrossRef
17.
Zurück zum Zitat Gélébart L, Mondon-Cancel R (2013) Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput Mater Sci 77:430–439CrossRef Gélébart L, Mondon-Cancel R (2013) Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput Mater Sci 77:430–439CrossRef
18.
Zurück zum Zitat Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140MathSciNetCrossRefMATH Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140MathSciNetCrossRefMATH
19.
Zurück zum Zitat Kabel M, Böhlke T, Schneider M (2014) Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations. Comput Mech 54(6):1497–1514MathSciNetCrossRefMATH Kabel M, Böhlke T, Schneider M (2014) Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations. Comput Mech 54(6):1497–1514MathSciNetCrossRefMATH
20.
21.
Zurück zum Zitat Leuschner M, Fritzen F (2017) Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces. Mech Mater 104:121–138CrossRef Leuschner M, Fritzen F (2017) Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces. Mech Mater 104:121–138CrossRef
22.
Zurück zum Zitat Michel J-C, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40(25):6937–6955 Special issue in Honor of George J. DvorakMathSciNetCrossRefMATH Michel J-C, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40(25):6937–6955 Special issue in Honor of George J. DvorakMathSciNetCrossRefMATH
23.
Zurück zum Zitat Michel J-C, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193(48–51):5477–5502 Advances in Computational PlasticityMathSciNetCrossRefMATH Michel J-C, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193(48–51):5477–5502 Advances in Computational PlasticityMathSciNetCrossRefMATH
24.
Zurück zum Zitat Michel J-C, Suquet P (2016a) A model-reduction approach to the micromechanical analysis of polycrystalline materials. Comput Mech 57(3):483–508MathSciNetCrossRefMATH Michel J-C, Suquet P (2016a) A model-reduction approach to the micromechanical analysis of polycrystalline materials. Comput Mech 57(3):483–508MathSciNetCrossRefMATH
25.
Zurück zum Zitat Michel J-C, Suquet P (2016b) A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J Mech Phys Solids 90:254–285MathSciNetCrossRef Michel J-C, Suquet P (2016b) A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J Mech Phys Solids 90:254–285MathSciNetCrossRef
26.
Zurück zum Zitat Mishra N, Vondřejc J, Zeman J (2016) A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media. J Comput Phys 321:151–168MathSciNetCrossRefMATH Mishra N, Vondřejc J, Zeman J (2016) A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media. J Comput Phys 321:151–168MathSciNetCrossRefMATH
28.
Zurück zum Zitat Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef
29.
Zurück zum Zitat Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318(11):1417–1423MATH Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318(11):1417–1423MATH
30.
Zurück zum Zitat Moulinec H, Suquet P (1995) A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructures. In: Pyrz R (ed) IUTAM symposium on microstructure-property interactions in composite materials, vol 37. Solid mechanics and its applications. Springer, Springer, pp 235–246CrossRef Moulinec H, Suquet P (1995) A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructures. In: Pyrz R (ed) IUTAM symposium on microstructure-property interactions in composite materials, vol 37. Solid mechanics and its applications. Springer, Springer, pp 235–246CrossRef
31.
Zurück zum Zitat Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetCrossRefMATH Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetCrossRefMATH
32.
Zurück zum Zitat Obnosov YV (1999) Periodic heterogeneous structures: New explicit solutions and effective characteristics of refraction of an imposed field. SIAM J Appl Math 59(4):1267–1287MathSciNetCrossRefMATH Obnosov YV (1999) Periodic heterogeneous structures: New explicit solutions and effective characteristics of refraction of an imposed field. SIAM J Appl Math 59(4):1267–1287MathSciNetCrossRefMATH
33.
Zurück zum Zitat Ponte P (1991) Castañeda. The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39(1):45–71MathSciNetCrossRefMATH Ponte P (1991) Castañeda. The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39(1):45–71MathSciNetCrossRefMATH
34.
Zurück zum Zitat Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM J Appl Math Mech/ Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58CrossRefMATH Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM J Appl Math Mech/ Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58CrossRefMATH
35.
Zurück zum Zitat Schneider M, Ospald F, Kabel M (2016) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng 105(9):693–720MathSciNetCrossRef Schneider M, Ospald F, Kabel M (2016) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng 105(9):693–720MathSciNetCrossRef
36.
Zurück zum Zitat Schneider M, Merkert D, Kabel M, Schneider M, Merkert D, Kabel M (2017) FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int J Numer Methods Eng 109(10):1461–1489 nme.5336MathSciNetCrossRefMATH Schneider M, Merkert D, Kabel M, Schneider M, Merkert D, Kabel M (2017) FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int J Numer Methods Eng 109(10):1461–1489 nme.5336MathSciNetCrossRefMATH
37.
Zurück zum Zitat Suquet P (1990) Une méthode simplifiée pour le calcul des propriétés élastiques de matériaux hétérogènes à structure périodique. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 311:769–774MATH Suquet P (1990) Une méthode simplifiée pour le calcul des propriétés élastiques de matériaux hétérogènes à structure périodique. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 311:769–774MATH
38.
39.
Zurück zum Zitat Terada K, Miura T, Kikuchi N (1997) Digital image-based modeling applied to the homogenization analysis of composite materials. Comput Mech 20(4):331–346CrossRefMATH Terada K, Miura T, Kikuchi N (1997) Digital image-based modeling applied to the homogenization analysis of composite materials. Comput Mech 20(4):331–346CrossRefMATH
40.
Zurück zum Zitat Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, BerlinMATH Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, BerlinMATH
41.
Zurück zum Zitat Vondřejc J, Zeman J, Marek I (2014) An FFT-based Galerkin method for homogenization of periodic media. Comput Math Appl 68(3):156–173MathSciNetCrossRefMATH Vondřejc J, Zeman J, Marek I (2014) An FFT-based Galerkin method for homogenization of periodic media. Comput Math Appl 68(3):156–173MathSciNetCrossRefMATH
42.
Zurück zum Zitat Willot F (2015) Fourier-based schemes for computing the mechanical response of composites with accurate local fields. Comptes Rendus Mécanique 343(3):232–245MathSciNetCrossRef Willot F (2015) Fourier-based schemes for computing the mechanical response of composites with accurate local fields. Comptes Rendus Mécanique 343(3):232–245MathSciNetCrossRef
43.
Zurück zum Zitat Willot F, Abdallah B, Pellegrini Y-P (2014) Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields. Int J Numer Meth Eng 98(7):518–533MathSciNetCrossRefMATH Willot F, Abdallah B, Pellegrini Y-P (2014) Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields. Int J Numer Meth Eng 98(7):518–533MathSciNetCrossRefMATH
44.
Zurück zum Zitat Yvonnet J (2012) A fast method for solving microstructural problems defined by digital images: a space Lippmann–Schwinger scheme. Int J Numer Meth Eng 92(2):178–205MathSciNetCrossRefMATH Yvonnet J (2012) A fast method for solving microstructural problems defined by digital images: a space Lippmann–Schwinger scheme. Int J Numer Meth Eng 92(2):178–205MathSciNetCrossRefMATH
45.
Zurück zum Zitat Zeman J, Vondřejc J, Novák J, Marek I (2010) Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J Comput Phys 229(21):8065–8071MathSciNetCrossRefMATH Zeman J, Vondřejc J, Novák J, Marek I (2010) Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J Comput Phys 229(21):8065–8071MathSciNetCrossRefMATH
46.
Zurück zum Zitat Zeman J, de Geus T W J, Vondřejc J, Peerlings R H J, Geers M G D (2017) A finite element perspective on nonlinear FFT-based micromechanical simulations. Int J Numer Methods Eng 111(10):903–926MathSciNetCrossRef Zeman J, de Geus T W J, Vondřejc J, Peerlings R H J, Geers M G D (2017) A finite element perspective on nonlinear FFT-based micromechanical simulations. Int J Numer Methods Eng 111(10):903–926MathSciNetCrossRef
Metadaten
Titel
Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems
verfasst von
Matthias Leuschner
Felix Fritzen
Publikationsdatum
30.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1501-5

Weitere Artikel der Ausgabe 3/2018

Computational Mechanics 3/2018 Zur Ausgabe

Neuer Inhalt