Skip to main content
Erschienen in:

16.06.2024

Fractional Order Convex Linear Prediction for Signal Modelling

verfasst von: Seyed Mostafa Alaviyan Shahri, Hamid Reza Abutalebi

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces and analyzes three innovative Linear Prediction (LP) models, consisting of two Fractional Order (FO) LP models and an integer LP model. The closed-form expressions for the proposed methods-namely, Two Parameter FO Linear Prediction (TP-FLP), FO Convex Linear Prediction (FCLP), and integer Convex Linear Prediction (CLP)-are derived for derivative order \( 0 \le \alpha \le 2 \). These derivations contribute to a more profound understanding of underlying mathematical principles of the proposed predictor. The foundation of our proposed methodologies is based on the presentation of the current signal sample as a linear combination of the FO derivative of two past samples, coupled with the utilization of the convex combination technique. An extensive set of experiments is conducted to compare the effectiveness of the proposed models with baseline methods involving two traditional LP models: First- and Second-order LP, along with the One Parameter FO Linear Prediction (OP-FLP) model. The performance evaluation encompasses a diverse range of signal types, including sinusoidal waves, damped sine waves, electroencephalogram (EEG), and speech signals. The simulation results demonstrate significant advancements achieved by the proposed models. Notably, the proposed FCLP exhibits a remarkable prediction gain of 24.74 dB, outperforming baseline methods such as OP-FLP, First- and Second-order LP models, that achieve prediction gains of 23.17, 23.15, and 10.14 dB, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat K. Assaleh, W.M. Ahmad, “Modeling of speech signals using fractional calculus,” in 2007 9th International Symposium on Signal Processing and Its Applications (ISSPA), pp. 1-4 (2007) K. Assaleh, W.M. Ahmad, “Modeling of speech signals using fractional calculus,” in 2007 9th International Symposium on Signal Processing and Its Applications (ISSPA), pp. 1-4 (2007)
2.
Zurück zum Zitat B.S. Atal, The history of linear prediction. IEEE Sign. Proc. Mag. 23(2), 154–161 (2006)CrossRef B.S. Atal, The history of linear prediction. IEEE Sign. Proc. Mag. 23(2), 154–161 (2006)CrossRef
3.
Zurück zum Zitat D. Beleanu, Z.B. Guvenç, J.A.T. Machado, New trends in nanotechnology and fractional calculus applications. Springer (2010) D. Beleanu, Z.B. Guvenç, J.A.T. Machado, New trends in nanotechnology and fractional calculus applications. Springer (2010)
4.
Zurück zum Zitat D. Beleanu, A.M. Lopes, Handbook of Fractional Calculus with Applications. De Gruyter (2019) D. Beleanu, A.M. Lopes, Handbook of Fractional Calculus with Applications. De Gruyter (2019)
5.
Zurück zum Zitat S.P. Boyd, L. Vandenberghe, Convex optimization (Cambridge University Press, Cambridge, 2004)CrossRef S.P. Boyd, L. Vandenberghe, Convex optimization (Cambridge University Press, Cambridge, 2004)CrossRef
6.
Zurück zum Zitat S. Das, I. Pan, Fractional order signal processing: introductory concepts and applications (Springer Science & Business Media, New York, 2011) S. Das, I. Pan, Fractional order signal processing: introductory concepts and applications (Springer Science & Business Media, New York, 2011)
7.
Zurück zum Zitat V. Despotovic, T. Skovranek, Z. Peric, One-parameter fractional linear prediction. Comput. & Electr. Eng. 69, 158–170 (2018)CrossRef V. Despotovic, T. Skovranek, Z. Peric, One-parameter fractional linear prediction. Comput. & Electr. Eng. 69, 158–170 (2018)CrossRef
8.
Zurück zum Zitat V. Despotovic, T. Skovranek, Z. Peric, Optimal fractional linear prediction with restricted memory. IEEE Sign. Proc. Lett. 26(5), 760–764 (2019)CrossRef V. Despotovic, T. Skovranek, Z. Peric, Optimal fractional linear prediction with restricted memory. IEEE Sign. Proc. Lett. 26(5), 760–764 (2019)CrossRef
9.
Zurück zum Zitat V. Despotovic, T. Skovranek, Z. Peric, Two-dimensional fractional linear prediction. Comput. & Electr. Eng. 77, 37–46 (2019)CrossRef V. Despotovic, T. Skovranek, Z. Peric, Two-dimensional fractional linear prediction. Comput. & Electr. Eng. 77, 37–46 (2019)CrossRef
12.
Zurück zum Zitat C. Li, M. Li, Hölder regularity for abstract fractional Cauchy problems with order in (0, 1). J. Appl. Math. Phys. 6, 310–319 (2018)CrossRef C. Li, M. Li, Hölder regularity for abstract fractional Cauchy problems with order in (0, 1). J. Appl. Math. Phys. 6, 310–319 (2018)CrossRef
13.
Zurück zum Zitat Y.N. Li, H.R. Sun, Z. Feng, Fractional abstract Cauchy problem with order in (1, 2). Dyn. Partial Differ. Equations 13(2), 155–177 (2016)MathSciNetCrossRef Y.N. Li, H.R. Sun, Z. Feng, Fractional abstract Cauchy problem with order in (1, 2). Dyn. Partial Differ. Equations 13(2), 155–177 (2016)MathSciNetCrossRef
14.
Zurück zum Zitat J.D. Markel, A.H.J. Gray, Linear prediction of speech, vol. 12 (Springer Science & Business Media, New York, 2013) J.D. Markel, A.H.J. Gray, Linear prediction of speech, vol. 12 (Springer Science & Business Media, New York, 2013)
15.
Zurück zum Zitat B. Mordukhovich, N.M. Nam, An easy path to convex analysis and applications (Springer Nature, New York, 2023)CrossRef B. Mordukhovich, N.M. Nam, An easy path to convex analysis and applications (Springer Nature, New York, 2023)CrossRef
16.
Zurück zum Zitat H. Sheng, Y. Chen, T. Qiu, Fractional processes and fractional-order signal processing: techniques & applications (Springer and Science Business Media, New York, 2011) H. Sheng, Y. Chen, T. Qiu, Fractional processes and fractional-order signal processing: techniques & applications (Springer and Science Business Media, New York, 2011)
17.
Zurück zum Zitat T. Skovranek, V. Despotovic, Audio signal processing using fractional linear prediction. Mathematics 7(7), 580 (2019)CrossRef T. Skovranek, V. Despotovic, Audio signal processing using fractional linear prediction. Mathematics 7(7), 580 (2019)CrossRef
Metadaten
Titel
Fractional Order Convex Linear Prediction for Signal Modelling
verfasst von
Seyed Mostafa Alaviyan Shahri
Hamid Reza Abutalebi
Publikationsdatum
16.06.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 9/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02747-6