Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 5/2012

01.09.2012 | Original Paper

Fracture-Induced Anisotropic Attenuation

verfasst von: José M. Carcione, Juan E. Santos, Stefano Picotti

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The triaxial nature of the tectonic stress in the earth’s crust favors the appearance of vertical fractures. The resulting rheology is usually effective anisotropy with orthorhombic and monoclinic symmetries. In addition, the presence of fluids leads to azimuthally varying attenuation of seismic waves. A dense set of fractures embedded in a background medium enhances anisotropy and rock compliance. Fractures are modeled as boundary discontinuities in the displacement u and particle velocity v as \([{\varvec{ \kappa}}\cdot {\bf u} + {\varvec{\eta}} \cdot {\bf v} ],\) where the brackets denote discontinuities across the fracture surface, \({\varvec{\kappa}}\) is a fracture stiffness, and \({\varvec{\eta}}\) is a viscosity related to the energy loss. We consider a transversely isotropic background medium (e.g., thin horizontal plane layers), with sets of long vertical fractures. Schoenberg and Muir’s theory combines the background medium and sets of vertical fractures to provide the 13 complex stiffnesses of the long-wavelength equivalent monoclinic and viscoelastic medium. Long-wavelength equivalent means that the dominant wavelength of the signal is much longer than the fracture spacing. The symmetry plane is the horizontal plane. The equations for orthorhombic and transversely isotropic media follow as particular cases. We compute the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts), and quality factors. The effective medium ranges from monoclinic symmetry to hexagonal (transversely isotropic) symmetry from the low- to the high-frequency limits in the case of a particle–velocity discontinuity (lossy case) and the attenuation shows typical Zener relaxation peaks as a function of frequency. The attenuation of the coupled waves may show important differences when computed versus the ray or phase angles, with triplication appearing in the Q factor of the qS wave. We have performed a full-wave simulation to compute the field corresponding to the coupled qP–qS waves in the symmetry plane of an effective monoclinic medium. The simulations agree with the predictions of the plane-wave analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 67:4427–4440CrossRef Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 67:4427–4440CrossRef
Zurück zum Zitat Barton N (2007) Fracture-induced seismic anisotropy when shearing is involved in production from fractured reservoirs. J Seism Explor 16:115–143 Barton N (2007) Fracture-induced seismic anisotropy when shearing is involved in production from fractured reservoirs. J Seism Explor 16:115–143
Zurück zum Zitat Carcione JM (1992) Anisotropic Q and velocity dispersion of finely layered media. Geophys Prospect 40:761–783CrossRef Carcione JM (1992) Anisotropic Q and velocity dispersion of finely layered media. Geophys Prospect 40:761–783CrossRef
Zurück zum Zitat Carcione JM (1996a) Plane-layered models for the analysis of wave propagation in reservoir environments. Geophys Prospect 44:3–26CrossRef Carcione JM (1996a) Plane-layered models for the analysis of wave propagation in reservoir environments. Geophys Prospect 44:3–26CrossRef
Zurück zum Zitat Carcione JM (1996b) Elastodynamics of a non-ideal interface: application to crack and fracture scattering. J Geophys Res 101:28177–28188CrossRef Carcione JM (1996b) Elastodynamics of a non-ideal interface: application to crack and fracture scattering. J Geophys Res 101:28177–28188CrossRef
Zurück zum Zitat Carcione JM (2007) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media. In: Handbook of geophysical exploration (revised and extended), vol 38, 2nd edn. Elsevier, Amsterdam, pp 321–383 Carcione JM (2007) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media. In: Handbook of geophysical exploration (revised and extended), vol 38, 2nd edn. Elsevier, Amsterdam, pp 321–383
Zurück zum Zitat Carcione JM, Cavallini F (1994) A rheological model for anelastic anisotropic media with applications to seismic wave propagation. Geophys J Int 119:338–348CrossRef Carcione JM, Cavallini F (1994) A rheological model for anelastic anisotropic media with applications to seismic wave propagation. Geophys J Int 119:338–348CrossRef
Zurück zum Zitat Carcione JM, Cavallini F, Helbig K (1998) Anisotropic attenuation and material symmetry. Acustica 84:495–502 Carcione JM, Cavallini F, Helbig K (1998) Anisotropic attenuation and material symmetry. Acustica 84:495–502
Zurück zum Zitat Carcione JM, Santos JE, Picotti P (2011) Anisotropic poroelasticity and wave-induced fluid flow: harmonic finite-element simulations. Geophys J Int 186:1245–1254CrossRef Carcione JM, Santos JE, Picotti P (2011) Anisotropic poroelasticity and wave-induced fluid flow: harmonic finite-element simulations. Geophys J Int 186:1245–1254CrossRef
Zurück zum Zitat Chapman M (2003) Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys Prospect 51:369–379CrossRef Chapman M (2003) Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys Prospect 51:369–379CrossRef
Zurück zum Zitat Chichinina TI, Obolentseva IR, Ronquillo-Jarillo G (2009a) Anisotropy of seismic attenuation in fractured media: theory and ultrasonic experiment. Transp Porous Media 79:1–14CrossRef Chichinina TI, Obolentseva IR, Ronquillo-Jarillo G (2009a) Anisotropy of seismic attenuation in fractured media: theory and ultrasonic experiment. Transp Porous Media 79:1–14CrossRef
Zurück zum Zitat Chichinina TI, Obolentseva IR, Gik L, Bobrov B, Ronquillo-Jarillo G (2009b) Attenuation anisotropy in the linear-slip model: interpretation of physical modeling data. Geophysics 74:WB165–WB176CrossRef Chichinina TI, Obolentseva IR, Gik L, Bobrov B, Ronquillo-Jarillo G (2009b) Attenuation anisotropy in the linear-slip model: interpretation of physical modeling data. Geophysics 74:WB165–WB176CrossRef
Zurück zum Zitat Coates RT, Schoenberg M (1995). Finite-difference modeling of faults and fractures. Geophysics 60:1514–1526CrossRef Coates RT, Schoenberg M (1995). Finite-difference modeling of faults and fractures. Geophysics 60:1514–1526CrossRef
Zurück zum Zitat Fan LF, Ren F, Ma GW (2011) An extended displacement discontinuity method for analysis of stress wave propagation in viscoelastic rock mass. J Rock Mech Geotech Eng 3:73−81CrossRef Fan LF, Ren F, Ma GW (2011) An extended displacement discontinuity method for analysis of stress wave propagation in viscoelastic rock mass. J Rock Mech Geotech Eng 3:73−81CrossRef
Zurück zum Zitat Grechka VA, Bakulin A, Tsvankin I (2003) Seismic characterization of vertical fractures described as general linear-slip interfaces. Geophys Prospect 51:117–130CrossRef Grechka VA, Bakulin A, Tsvankin I (2003) Seismic characterization of vertical fractures described as general linear-slip interfaces. Geophys Prospect 51:117–130CrossRef
Zurück zum Zitat Grechka V, Tsvankin I (2003) Feasibility of seismic characterization of multiple fracture sets. Geophysics 68:1399–1407CrossRef Grechka V, Tsvankin I (2003) Feasibility of seismic characterization of multiple fracture sets. Geophysics 68:1399–1407CrossRef
Zurück zum Zitat Hall SA, Kendall J-M (2003) Fracture characterization at Valhall: application of P-wave amplitude variation with offset and azimuth (AVOA) analysis to a 3D ocean-bottom data set. Geophysics 68:1150–1160CrossRef Hall SA, Kendall J-M (2003) Fracture characterization at Valhall: application of P-wave amplitude variation with offset and azimuth (AVOA) analysis to a 3D ocean-bottom data set. Geophysics 68:1150–1160CrossRef
Zurück zum Zitat Hansen BRH (2002) Evaluating the impact of fracture-induced anisotropy on reservoir rock property estimates made from seismic data. Report no.: GPH 7/02, Curtin University of Technology Hansen BRH (2002) Evaluating the impact of fracture-induced anisotropy on reservoir rock property estimates made from seismic data. Report no.: GPH 7/02, Curtin University of Technology
Zurück zum Zitat Hood JA (1991) A simple method for decomposing fracture-induced anisotropy. Geophysics 56:1275–1279CrossRef Hood JA (1991) A simple method for decomposing fracture-induced anisotropy. Geophysics 56:1275–1279CrossRef
Zurück zum Zitat Krzikalla F, Müller T (2011) Anisotropic P-SV-wave dispersion and attenuation due to inter-layer flow in thinly layered porous rocks. Geophysics 76:WA135–WA145. doi:10.1190/1.3555077 CrossRef Krzikalla F, Müller T (2011) Anisotropic P-SV-wave dispersion and attenuation due to inter-layer flow in thinly layered porous rocks. Geophysics 76:WA135–WA145. doi:10.​1190/​1.​3555077 CrossRef
Zurück zum Zitat Liu E, Hudson JA, Pointer T (2000) Equivalent medium representation of fractured rock. J Geophys Res 105:2981–3000CrossRef Liu E, Hudson JA, Pointer T (2000) Equivalent medium representation of fractured rock. J Geophys Res 105:2981–3000CrossRef
Zurück zum Zitat Maultzsch S (2005) Analysis of frequency-dependent anisotropy in VSP data. PhD thesis, University of Edinburgh Maultzsch S (2005) Analysis of frequency-dependent anisotropy in VSP data. PhD thesis, University of Edinburgh
Zurück zum Zitat Nakagawa S, Myer LR (2009) Fracture permeability and seismic wave scattering—poroelastic linear-slip interface model for heterogeneous fractures. SEG Expanded Abstracts 28, 3461. doi:10.1190/1.3255581 Nakagawa S, Myer LR (2009) Fracture permeability and seismic wave scattering—poroelastic linear-slip interface model for heterogeneous fractures. SEG Expanded Abstracts 28, 3461. doi:10.​1190/​1.​3255581
Zurück zum Zitat Nichols D, Muir F, Schoenberg M (1989) Elastic properties of rocks with multiple sets of fractures. In: Proceedings of the 63rd Annual International Meeting of the Society of Exploration Geophysicists, Extended Abstracts, pp 471–474 Nichols D, Muir F, Schoenberg M (1989) Elastic properties of rocks with multiple sets of fractures. In: Proceedings of the 63rd Annual International Meeting of the Society of Exploration Geophysicists, Extended Abstracts, pp 471–474
Zurück zum Zitat Perino A, Zhu, JB, Li JC, Barla G, Zhao J (2010) Theoretical methods for wave propagation across jointed rock masses. Rock Mech Rock Eng 43:799–809CrossRef Perino A, Zhu, JB, Li JC, Barla G, Zhao J (2010) Theoretical methods for wave propagation across jointed rock masses. Rock Mech Rock Eng 43:799–809CrossRef
Zurück zum Zitat Pyrak-Nolte LJ, Myer LR, Cook NGW (1990) Transmission of seismic waves across single natural fractures. J Geophys Res 95:8617–8638CrossRef Pyrak-Nolte LJ, Myer LR, Cook NGW (1990) Transmission of seismic waves across single natural fractures. J Geophys Res 95:8617–8638CrossRef
Zurück zum Zitat Santos JE, Carcione JM, Picotti S (2011) Viscoelastic-stiffness tensor of anisotropic media from oscillatory numerical experiments. Comput Methods Appl Mech Eng 200:896–904CrossRef Santos JE, Carcione JM, Picotti S (2011) Viscoelastic-stiffness tensor of anisotropic media from oscillatory numerical experiments. Comput Methods Appl Mech Eng 200:896–904CrossRef
Zurück zum Zitat Schoenberg M (1980) Elastic wave behavior across linear slip interfaces. J Acoust Soc Am 68:1516–1521CrossRef Schoenberg M (1980) Elastic wave behavior across linear slip interfaces. J Acoust Soc Am 68:1516–1521CrossRef
Zurück zum Zitat Schoenberg M (1983) Reflection of elastic waves from periodically stratified media with interfacial slip. Geophys Prospect 31:265–292CrossRef Schoenberg M (1983) Reflection of elastic waves from periodically stratified media with interfacial slip. Geophys Prospect 31:265–292CrossRef
Zurück zum Zitat Schoenberg M, Douma J (1988) Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys Prospect 36:571–590CrossRef Schoenberg M, Douma J (1988) Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys Prospect 36:571–590CrossRef
Zurück zum Zitat Schoenberg M, Helbig K (1997) Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics 62:1954–1974CrossRef Schoenberg M, Helbig K (1997) Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics 62:1954–1974CrossRef
Zurück zum Zitat Schoenberg M, Muir F (1989) A calculus for finely layered anisotropic media. Geophysics 54:581–589CrossRef Schoenberg M, Muir F (1989) A calculus for finely layered anisotropic media. Geophysics 54:581–589CrossRef
Zurück zum Zitat Schoenberg M, Dean S, Sayers C (1999) Azimuth-dependent tuning of seismic waves reflected from fractured reservoirs. Geophysics 64:1160–1171CrossRef Schoenberg M, Dean S, Sayers C (1999) Azimuth-dependent tuning of seismic waves reflected from fractured reservoirs. Geophysics 64:1160–1171CrossRef
Zurück zum Zitat Zhang J, Gao H (2009) Elastic wave modelling in 3-D fractured media: an explicit approach. Geophys J Int 177:1233–1241CrossRef Zhang J, Gao H (2009) Elastic wave modelling in 3-D fractured media: an explicit approach. Geophys J Int 177:1233–1241CrossRef
Zurück zum Zitat Zhu Y, Tsvankin I (2007) Plane-wave attenuation anisotropy in orthorhombic media. Geophysics 72:D9–D19CrossRef Zhu Y, Tsvankin I (2007) Plane-wave attenuation anisotropy in orthorhombic media. Geophysics 72:D9–D19CrossRef
Metadaten
Titel
Fracture-Induced Anisotropic Attenuation
verfasst von
José M. Carcione
Juan E. Santos
Stefano Picotti
Publikationsdatum
01.09.2012
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 5/2012
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-012-0237-y

Weitere Artikel der Ausgabe 5/2012

Rock Mechanics and Rock Engineering 5/2012 Zur Ausgabe