Skip to main content

2021 | OriginalPaper | Buchkapitel

Fracture Mechanics Performance of Through-Thickness Crack of Polymeric 3D Printed Components

verfasst von : Waleed Ahmed, Essam Zaneldin, Souzan Kabbani

Erschienen in: Proceedings of the 8th International Conference on Fracture, Fatigue and Wear

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This experimental study aims to explore the failure behavior of a pre- and post-cracked polymeric 3D printed components subjected to tensile mode. A set of through-thickness pre-cracked specimens of different cracks patterns and geometry was designed and implemented in the 3D printed parts. The specimens are then subjected to a tensile test mode. Besides, analogous intact samples were produced by 3D printing technology where the through-thickness post-cracks were created using laser cutting process of a geometry with cracks similar to those of the pre-cracked specimens. It has been observed that the pre-cracked samples initially introduced, and 3D printed cracked specimens have more resistance to fracture mechanics failure due to crack-bridging caused by the 3D printing filament profile around the crack profile. On the other hand, the samples with post-cracks made by laser cutting demonstrated a significant drop in the fracture failure resistance due to the interruption of the 3D printed filaments of the intact specimens. In conclusion, this study revealed that pre-cracked 3D printed components did not show the actual failure and fracture mechanics behavior. This is because the cracks could be introduced in the components after the additive manufacturing process during the service life and that would damage the 3D printed filament path of the components and, hence, will cause high-stress concentration that leads to unpredicted and fast failure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Issah MA, Waleed KA, Hayder ZA, Hamad A (2019) 3D printing applications in mechanical engineering education. Brill|Sense, Leiden, The Netherlands, pp 90–131 Issah MA, Waleed KA, Hayder ZA, Hamad A (2019) 3D printing applications in mechanical engineering education. Brill|Sense, Leiden, The Netherlands, pp 90–131
2.
Zurück zum Zitat Ahmed WK, Al-Douri Y (2020) 17—three-dimensional printing of ceramic powder technology. In: Al-Douri Y (ed) Metal oxide powder technologies. Elsevier, pp 351–383 Ahmed WK, Al-Douri Y (2020) 17—three-dimensional printing of ceramic powder technology. In: Al-Douri Y (ed) Metal oxide powder technologies. Elsevier, pp 351–383
3.
Zurück zum Zitat Wang XC, Wei J, Yi XB, Zhang J, Shang K, Wang Q (2014) 3D printing technology and the adaptability of printing material. Appl Mech Mater 633/634(Part 1):569–573 Wang XC, Wei J, Yi XB, Zhang J, Shang K, Wang Q (2014) 3D printing technology and the adaptability of printing material. Appl Mech Mater 633/634(Part 1):569–573
4.
Zurück zum Zitat Hao B, Lin G (2020) 3D printing technology and its application in industrial manufacturing. IOP Conf Ser Mater Sci Eng 782:022065CrossRef Hao B, Lin G (2020) 3D printing technology and its application in industrial manufacturing. IOP Conf Ser Mater Sci Eng 782:022065CrossRef
5.
Zurück zum Zitat Khawaja HA, Alabdouli H, Alqaydi H, Mansour A, Ahmed W, Jassmi HA (2020) Investigating the mechanical properties of 3D printed components. In: 2020 Advances in science and engineering technology international conferences (ASET), pp 1–7 Khawaja HA, Alabdouli H, Alqaydi H, Mansour A, Ahmed W, Jassmi HA (2020) Investigating the mechanical properties of 3D printed components. In: 2020 Advances in science and engineering technology international conferences (ASET), pp 1–7
6.
Zurück zum Zitat AlDarmaki A, AlShamsi A, Ahmed WK, Jassmi HA (2019) Designing and developing innovative structural engineering failure experiment using additive manufacturing technology. In: 2019 advances in science and engineering technology international conferences (ASET), pp 1–6 AlDarmaki A, AlShamsi A, Ahmed WK, Jassmi HA (2019) Designing and developing innovative structural engineering failure experiment using additive manufacturing technology. In: 2019 advances in science and engineering technology international conferences (ASET), pp 1–6
7.
Zurück zum Zitat Broek D (1978) Elementary engineering fracture mechanics. Sijthoff & Noordhoff, Alphen aan den RijnMATH Broek D (1978) Elementary engineering fracture mechanics. Sijthoff & Noordhoff, Alphen aan den RijnMATH
8.
Zurück zum Zitat Ahmed W (2020) Wind turbine composite blade: fracture mechanics assessment. J Theor Appl Mech 60(3):238–258MathSciNet Ahmed W (2020) Wind turbine composite blade: fracture mechanics assessment. J Theor Appl Mech 60(3):238–258MathSciNet
9.
Zurück zum Zitat Ahmed WK, Al-Rifaie WN (2015) The impact of cracked microparticles on the mechanical and the fracture behavior of particulate composite. J Nano Electron Phys 7(3):03008-1–6 Ahmed WK, Al-Rifaie WN (2015) The impact of cracked microparticles on the mechanical and the fracture behavior of particulate composite. J Nano Electron Phys 7(3):03008-1–6
10.
Zurück zum Zitat Ahmed WK, Teng H (2014) Characterisation of fractured particulate reinforced composite. Int J Microstruct Mater Prop 9(2):160–175 Ahmed WK, Teng H (2014) Characterisation of fractured particulate reinforced composite. Int J Microstruct Mater Prop 9(2):160–175
11.
Zurück zum Zitat Wahab MA (2010) Finite elements in fracture mechanics: for general power type singularity problems. LAP LAMBERT, Saarbrücken, Germany Wahab MA (2010) Finite elements in fracture mechanics: for general power type singularity problems. LAP LAMBERT, Saarbrücken, Germany
12.
Zurück zum Zitat Khosravani MR, Zolfagharian A (2020) Fracture and load-carrying capacity of 3D-printed cracked components. Extreme Mech Lett 37 Khosravani MR, Zolfagharian A (2020) Fracture and load-carrying capacity of 3D-printed cracked components. Extreme Mech Lett 37
13.
Zurück zum Zitat Ishii K, Todoroki A, Mizutani Y, Suzuki Y, Koga Y, Matsuzaki R, Ueda M et al (2019) Bending fracture rule for 3D-printed curved continuous-fiber composite. Adv Compos Mater 28(4):383–395CrossRef Ishii K, Todoroki A, Mizutani Y, Suzuki Y, Koga Y, Matsuzaki R, Ueda M et al (2019) Bending fracture rule for 3D-printed curved continuous-fiber composite. Adv Compos Mater 28(4):383–395CrossRef
14.
Zurück zum Zitat Xu Y, Zhang H, Šavija B, Chaves Figueiredo S, Schlangen E (2019) Deformation and fracture of 3D printed disordered lattice materials: experiments and modeling. Mater Design 162 Xu Y, Zhang H, Šavija B, Chaves Figueiredo S, Schlangen E (2019) Deformation and fracture of 3D printed disordered lattice materials: experiments and modeling. Mater Design 162
15.
Zurück zum Zitat Allum J, Gleadall A, Silberschmidt VV (2020) Fracture of 3D-printed polymers: crucial role of filament-scale geometric features. Eng Fract Mech 224 Allum J, Gleadall A, Silberschmidt VV (2020) Fracture of 3D-printed polymers: crucial role of filament-scale geometric features. Eng Fract Mech 224
16.
Zurück zum Zitat Gardan J, Makke A, Recho N (2018) Improving the fracture toughness of 3D printed thermoplastic polymers by fused deposition modeling. Int J Fract 210(1–2):1–15CrossRef Gardan J, Makke A, Recho N (2018) Improving the fracture toughness of 3D printed thermoplastic polymers by fused deposition modeling. Int J Fract 210(1–2):1–15CrossRef
17.
Zurück zum Zitat Aliheidari N, Tripuraneni R, Ameli A, Nadimpalli S (2017) Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polym Test 60:94–101CrossRef Aliheidari N, Tripuraneni R, Ameli A, Nadimpalli S (2017) Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polym Test 60:94–101CrossRef
18.
Zurück zum Zitat Noori H (2019) Interlayer fracture energy of 3D-printed PLA material. Int J Adv Manuf Technol 101(5–8):1959–1965 Noori H (2019) Interlayer fracture energy of 3D-printed PLA material. Int J Adv Manuf Technol 101(5–8):1959–1965
19.
Zurück zum Zitat Zolfagharian A, Khosravani MR, Kaynak A (2020) Fracture resistance analysis of 3D-printed polymers. Polymers 12(2) Zolfagharian A, Khosravani MR, Kaynak A (2020) Fracture resistance analysis of 3D-printed polymers. Polymers 12(2)
20.
Zurück zum Zitat Cuesta II, Martinez-Pañeda E, Díaz A, Alegre JM (2019) The essential work of fracture parameters for 3D printed polymer sheets. Mater Des 181:107968CrossRef Cuesta II, Martinez-Pañeda E, Díaz A, Alegre JM (2019) The essential work of fracture parameters for 3D printed polymer sheets. Mater Des 181:107968CrossRef
21.
Zurück zum Zitat Gendviliene I, Simoliunas E, Rekstyte S, Malinauskas M, Zaleckas L, Jegelevicius D, Bukelskiene V et al (2020) Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAP scaffolds. J Mech Behav Biomed Mater 104 Gendviliene I, Simoliunas E, Rekstyte S, Malinauskas M, Zaleckas L, Jegelevicius D, Bukelskiene V et al (2020) Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAP scaffolds. J Mech Behav Biomed Mater 104
23.
Zurück zum Zitat Beer FP, Johnston ER, DeWolf JT (2006) Mechanics of materials. McGraw-Hill Higher Education, Boston Beer FP, Johnston ER, DeWolf JT (2006) Mechanics of materials. McGraw-Hill Higher Education, Boston
24.
Zurück zum Zitat Broek D (1997) The practical use of fracture mechanics. Kluwer Academic Publishers, Dordrecht Broek D (1997) The practical use of fracture mechanics. Kluwer Academic Publishers, Dordrecht
Metadaten
Titel
Fracture Mechanics Performance of Through-Thickness Crack of Polymeric 3D Printed Components
verfasst von
Waleed Ahmed
Essam Zaneldin
Souzan Kabbani
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9893-7_19

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.