Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Free-Standing Graphene Film with High Conductivity by Thermal Reduction of Self-assembled Graphene Oxide Film

verfasst von : Cheng-Meng Chen

Erschienen in: Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene, as a two-dimensional crystal of sp2 conjugated carbon atoms, is viewed as a building block for carbonaceous materials of other dimensionalities including zero-dimensional fullerenes, one-dimensional carbon nanotubes, and three-dimensional (3D) graphite [1].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.CrossRef
2.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.CrossRef
3.
Zurück zum Zitat Wei W, Yang SB, Zhou HX, Lieberwirth I, Feng XL, Müllen K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater. 2013;22:2909–14.CrossRef Wei W, Yang SB, Zhou HX, Lieberwirth I, Feng XL, Müllen K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater. 2013;22:2909–14.CrossRef
4.
Zurück zum Zitat Gong YJ, Yang SB, Zhan L, Ma LL, Vajtai R, Ajayan PM. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Funct Mater. 2014;24:125–30.CrossRef Gong YJ, Yang SB, Zhan L, Ma LL, Vajtai R, Ajayan PM. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Funct Mater. 2014;24:125–30.CrossRef
5.
Zurück zum Zitat Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.CrossRef Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.CrossRef
6.
Zurück zum Zitat Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.CrossRef Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.CrossRef
7.
Zurück zum Zitat Kim F, Cote LJ, Huang JX. Graphene oxide: Surface activity and two-dimensional assembly. Adv Mater. 2010;22(17):1954–8.CrossRef Kim F, Cote LJ, Huang JX. Graphene oxide: Surface activity and two-dimensional assembly. Adv Mater. 2010;22(17):1954–8.CrossRef
8.
Zurück zum Zitat Xu YX, Bai H, Lu GW, Li C, Shi GQ. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 2008; 130(18): 5856. Xu YX, Bai H, Lu GW, Li C, Shi GQ. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 2008; 130(18): 5856.
9.
Zurück zum Zitat An SJ, Zhu YW, Lee SH, Stoller MD, Emilsson T, Park S, et al. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett. 2010;1(8):1259–63.CrossRef An SJ, Zhu YW, Lee SH, Stoller MD, Emilsson T, Park S, et al. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett. 2010;1(8):1259–63.CrossRef
10.
Zurück zum Zitat Yang XW, Zhu JW, Qiu L, Li D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv Mater. 2011;23(25):2833–8.CrossRef Yang XW, Zhu JW, Qiu L, Li D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv Mater. 2011;23(25):2833–8.CrossRef
11.
Zurück zum Zitat Liu F, Seo TS. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv Funct Mater. 2010;20(12):1930–6.CrossRef Liu F, Seo TS. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv Funct Mater. 2010;20(12):1930–6.CrossRef
12.
Zurück zum Zitat Xu YX, Sheng KX, Li C, Shi GQ. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010;4(7):4324–30.CrossRef Xu YX, Sheng KX, Li C, Shi GQ. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010;4(7):4324–30.CrossRef
13.
Zurück zum Zitat Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed. 2010;49(52):10084–8.CrossRef Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed. 2010;49(52):10084–8.CrossRef
14.
Zurück zum Zitat Tang ZH, Shen SL, Zhuang J, Wang X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed. 2010;49(27):4603–7.CrossRef Tang ZH, Shen SL, Zhuang J, Wang X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed. 2010;49(27):4603–7.CrossRef
15.
Zurück zum Zitat Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapor deposition. Nat Mater. 2011;10(6):424–8.CrossRef Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapor deposition. Nat Mater. 2011;10(6):424–8.CrossRef
16.
Zurück zum Zitat Liu QF, Ishibashi A, Fujigaya T, Mimura K, Gotou T, Uera K, et al. Formation of self-organized graphene honeycomb films on substrates. Carbon. 2011;49(11):3424–9.CrossRef Liu QF, Ishibashi A, Fujigaya T, Mimura K, Gotou T, Uera K, et al. Formation of self-organized graphene honeycomb films on substrates. Carbon. 2011;49(11):3424–9.CrossRef
17.
Zurück zum Zitat Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater. 2010;22(33):3723–8.CrossRef Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater. 2010;22(33):3723–8.CrossRef
18.
Zurück zum Zitat Lv RT, Cui TX, Jun MS, Zhang Q, Cao AY, Su DS, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater. 2011;21(5):999–1006.CrossRef Lv RT, Cui TX, Jun MS, Zhang Q, Cao AY, Su DS, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater. 2011;21(5):999–1006.CrossRef
19.
Zurück zum Zitat Chen CM, Yang YG, Wen YF, Yang QH, Wang MZ. Preparation of ordered graphene-based conductive membrane. New Carbon Mater. 2008;23(4):345–50. Chen CM, Yang YG, Wen YF, Yang QH, Wang MZ. Preparation of ordered graphene-based conductive membrane. New Carbon Mater. 2008;23(4):345–50.
20.
Zurück zum Zitat Pham VH, Cuong TV, Hur SH, Shin EW, Kim JS, Chung JS, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon. 2010;48(7):1945–51.CrossRef Pham VH, Cuong TV, Hur SH, Shin EW, Kim JS, Chung JS, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon. 2010;48(7):1945–51.CrossRef
21.
Zurück zum Zitat Xu YF, Long GK, Huang L, Huang Y, Wan XJ, Ma YF, et al. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon. 2010;48(11):3308–11.CrossRef Xu YF, Long GK, Huang L, Huang Y, Wan XJ, Ma YF, et al. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon. 2010;48(11):3308–11.CrossRef
22.
Zurück zum Zitat Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. 2008;3(9):538–42.CrossRef Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. 2008;3(9):538–42.CrossRef
23.
Zurück zum Zitat Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.CrossRef Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.CrossRef
24.
Zurück zum Zitat Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol. 2008;3(5):270–4.CrossRef Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol. 2008;3(5):270–4.CrossRef
25.
Zurück zum Zitat Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47(1):145–52.CrossRef Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47(1):145–52.CrossRef
26.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.CrossRef
27.
Zurück zum Zitat Xu YX, Sheng KX, Li C, Shi GQ. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J Mater Chem. 2011;21(20):7376–80.CrossRef Xu YX, Sheng KX, Li C, Shi GQ. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J Mater Chem. 2011;21(20):7376–80.CrossRef
28.
Zurück zum Zitat Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater. 2009;19(12):1987–92.CrossRef Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater. 2009;19(12):1987–92.CrossRef
29.
Zurück zum Zitat Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48(15):4466–74.CrossRef Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48(15):4466–74.CrossRef
30.
Zurück zum Zitat Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon. 2010;48(5):1686–9.CrossRef Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon. 2010;48(5):1686–9.CrossRef
31.
Zurück zum Zitat Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.CrossRef Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.CrossRef
32.
Zurück zum Zitat Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.CrossRef Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.CrossRef
33.
Zurück zum Zitat Liu YZ, Li YF, Yang YG, Wen YF, Wang MZ. The effect of thermal treatment at low temperatures on graphene oxide films. New Carbon Mater. 2011;26(1):41–5. Liu YZ, Li YF, Yang YG, Wen YF, Wang MZ. The effect of thermal treatment at low temperatures on graphene oxide films. New Carbon Mater. 2011;26(1):41–5.
34.
Zurück zum Zitat Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Comm. 2010;1:73.CrossRef Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Comm. 2010;1:73.CrossRef
35.
Zurück zum Zitat Liu J, Jeong H, Liu J, Lee K, Park JY, Ahn YH, et al. Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon. 2010;48(8):2282–9.CrossRef Liu J, Jeong H, Liu J, Lee K, Park JY, Ahn YH, et al. Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon. 2010;48(8):2282–9.CrossRef
36.
Zurück zum Zitat Liu JQ, Lin ZQ, Liu TJ, Yin ZY, Zhou XZ, Chen SF, et al. Multilayer stacked low-temperature-reduced graphene oxide films: Preparation, characterization, and application in polymer memory devices. Small. 2010;6(14):1536–42.CrossRef Liu JQ, Lin ZQ, Liu TJ, Yin ZY, Zhou XZ, Chen SF, et al. Multilayer stacked low-temperature-reduced graphene oxide films: Preparation, characterization, and application in polymer memory devices. Small. 2010;6(14):1536–42.CrossRef
37.
Zurück zum Zitat Lai LF, Chen LW, Zhan D, Sun L, Liu JP, Lim SH, et al. One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon. 2011;49(10):3250–7.CrossRef Lai LF, Chen LW, Zhan D, Sun L, Liu JP, Lim SH, et al. One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon. 2011;49(10):3250–7.CrossRef
38.
Zurück zum Zitat Peng X-Y, Liu X-X, Diamond D, Lau KT. Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon. 2011;49(11):3488–96.CrossRef Peng X-Y, Liu X-X, Diamond D, Lau KT. Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon. 2011;49(11):3488–96.CrossRef
39.
Zurück zum Zitat Yan J, Wei T, Shao B, Ma FQ, Fan ZJ, Zhang ML, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon. 2010;48(6):1731–7.CrossRef Yan J, Wei T, Shao B, Ma FQ, Fan ZJ, Zhang ML, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon. 2010;48(6):1731–7.CrossRef
40.
Zurück zum Zitat Oberlin A. Carbonization and graphitization. Carbon. 1984;22(6):521–41.CrossRef Oberlin A. Carbonization and graphitization. Carbon. 1984;22(6):521–41.CrossRef
41.
Zurück zum Zitat Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37(9):1379–89.CrossRef Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37(9):1379–89.CrossRef
42.
Zurück zum Zitat Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem. 2010;2(7):581–7.CrossRef Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem. 2010;2(7):581–7.CrossRef
43.
Zurück zum Zitat Chen CM, Huang JQ, Zhang Q, Gong WZ, Yang QH, Wang MZ, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon. 2012;50(2):659–67.CrossRef Chen CM, Huang JQ, Zhang Q, Gong WZ, Yang QH, Wang MZ, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon. 2012;50(2):659–67.CrossRef
Metadaten
Titel
Free-Standing Graphene Film with High Conductivity by Thermal Reduction of Self-assembled Graphene Oxide Film
verfasst von
Cheng-Meng Chen
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48676-4_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.