Skip to main content
Erschienen in: Journal of Materials Science 24/2021

25.05.2021 | Electronic materials

Free-standing In2O3(ZnO)m superlattice microplates grown by optical vapor supersaturated precipitation

verfasst von: Yimin Liao, Yinzhou Yan, Lixue Yang, Yongman Pan, Yue Lu, Fei Chen, Qiang Wang, Yijian Jiang

Erschienen in: Journal of Materials Science | Ausgabe 24/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, we fabricated In2O3(ZnO)m (IZO) superlattice microplates with hexagon morphologies by the substrate-free optical vapor supersaturated precipitation. The IZO microplates possessed a superlattice structure with a large m number, i.e., m = 23, consisting of layered alternating stacks of octahedral InO2 as inversion boundaries and layered InZnmOm+1+ as a zig-zag modulated pattern. The Raman peak at 613 cm−1 confirmed the superlattice of the IZO microplates. The broad asymmetric excitonic photoluminescence (PL) emission with the photon energy of 3.236 eV indicated the heavy doping of indium in the IZO, resulting a redshift of ~ 32 meV from the near-band-edge emission. The unusual negative thermal quenching of PL intensity was also observed. Moreover, the anisotropic electrical properties of the IZO superlattice microplates were manifested, for the first time, where the in-plane conductivity was two orders of magnitude higher than out-plane one. The present work provided new insight into the free-standing IZO superlattice microdevices for future optoelectronic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Moriga T, Edwards DD, Mason TO et al (1998) Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. J Am Ceram Soc 81:1310–1316CrossRef Moriga T, Edwards DD, Mason TO et al (1998) Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. J Am Ceram Soc 81:1310–1316CrossRef
2.
Zurück zum Zitat Su J, Li H, Huang Y et al (2011) Electronic transport properties of In-doped ZnO nanobelts with different concentration. Nanoscale 3:2182–2187CrossRef Su J, Li H, Huang Y et al (2011) Electronic transport properties of In-doped ZnO nanobelts with different concentration. Nanoscale 3:2182–2187CrossRef
3.
Zurück zum Zitat Thambidurai M, Kim JY, Kang CM et al (2014) Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renew Energ 66:433–442CrossRef Thambidurai M, Kim JY, Kang CM et al (2014) Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renew Energ 66:433–442CrossRef
4.
Zurück zum Zitat Ohta H, Seo WS, Koumoto K (1996) Thermoelectric properties of homologous compounds in the ZnO-In2O3 system. J Am Ceram Soc 79:2193–2196CrossRef Ohta H, Seo WS, Koumoto K (1996) Thermoelectric properties of homologous compounds in the ZnO-In2O3 system. J Am Ceram Soc 79:2193–2196CrossRef
5.
Zurück zum Zitat Peng H, Song JH, Hopper EM, Zhu Q, Mason TO, Freeman AJ (2012) Possible n-type carrier sources in In2O3(ZnO)k. Chem Mater 24:106–114CrossRef Peng H, Song JH, Hopper EM, Zhu Q, Mason TO, Freeman AJ (2012) Possible n-type carrier sources in In2O3(ZnO)k. Chem Mater 24:106–114CrossRef
6.
Zurück zum Zitat García-Fernández J, Torres-Pardo A, Bartolomé J et al (2020) Influence of cation substitution on the complex structure and luminescent properties of the ZnkIn2Ok+3 system. Chem Mater 32:6176–6185CrossRef García-Fernández J, Torres-Pardo A, Bartolomé J et al (2020) Influence of cation substitution on the complex structure and luminescent properties of the ZnkIn2Ok+3 system. Chem Mater 32:6176–6185CrossRef
7.
Zurück zum Zitat García-Fernández J, Bartolomé J, Torres-Pardo A et al (2017) Structural characterization at the atomic level and optical properties of the ZnkIn2Ok +3 (3 ≤ k ≤ 13) system. J Mater Chem C 5:10176–10184CrossRef García-Fernández J, Bartolomé J, Torres-Pardo A et al (2017) Structural characterization at the atomic level and optical properties of the ZnkIn2Ok +3 (3 ≤ k ≤ 13) system. J Mater Chem C 5:10176–10184CrossRef
8.
Zurück zum Zitat Schmid H, Okunishi E, Oikawa T, Mader W (2012) Structural and elemental analysis of iron and indium doped zinc oxide by spectroscopic imaging in Cs-corrected STEM. Micron 43:49–56CrossRef Schmid H, Okunishi E, Oikawa T, Mader W (2012) Structural and elemental analysis of iron and indium doped zinc oxide by spectroscopic imaging in Cs-corrected STEM. Micron 43:49–56CrossRef
9.
Zurück zum Zitat Van De Walle CG (2001) Defect analysis and engineering in ZnO. Phys B 308–310:899–903CrossRef Van De Walle CG (2001) Defect analysis and engineering in ZnO. Phys B 308–310:899–903CrossRef
10.
Zurück zum Zitat Yoshinari A, Ishida K, Murai KI, Moriga T (2009) Crystal and electronic band structures of homologous compounds ZnkIn2Ok+3 by Rietveld analysis and first-principle calculation. Mater Res Bull 44:432–436CrossRef Yoshinari A, Ishida K, Murai KI, Moriga T (2009) Crystal and electronic band structures of homologous compounds ZnkIn2Ok+3 by Rietveld analysis and first-principle calculation. Mater Res Bull 44:432–436CrossRef
11.
Zurück zum Zitat Li C, Bando Y, Nakamura M, Kimizuka N (1997) A modulated structure of In2O3(ZnO)m as revealed by high-resolution electron microscopy. J Electron Microsc 46:119–127CrossRef Li C, Bando Y, Nakamura M, Kimizuka N (1997) A modulated structure of In2O3(ZnO)m as revealed by high-resolution electron microscopy. J Electron Microsc 46:119–127CrossRef
12.
Zurück zum Zitat Li C, Bando Y, Nakamura M, Kimizuka N (1999) High-resolution electron microscopy of a modulated structure in InMO3(ZnO)m (M = In, Fe, Ga, and Al; m = integer): effect of solid solution formation. Z Krist-Cryst Mater 214:528–533CrossRef Li C, Bando Y, Nakamura M, Kimizuka N (1999) High-resolution electron microscopy of a modulated structure in InMO3(ZnO)m (M = In, Fe, Ga, and Al; m = integer): effect of solid solution formation. Z Krist-Cryst Mater 214:528–533CrossRef
13.
Zurück zum Zitat Lv M, Liu G, Xu X (2016) Homologous compounds ZnnIn2O3+n (n = 4, 5, and 7) containing laminated functional groups as efficient photocatalysts for hydrogen production. ACS Appl Mater Inter 8:28700–28708CrossRef Lv M, Liu G, Xu X (2016) Homologous compounds ZnnIn2O3+n (n = 4, 5, and 7) containing laminated functional groups as efficient photocatalysts for hydrogen production. ACS Appl Mater Inter 8:28700–28708CrossRef
14.
Zurück zum Zitat García-Fernández J, Torres-Pardo A, Ramírez-Castellanos J, Rossell MD, González-Calbet JM (2021) Evaluation of the nanodomain structure in In-Zn-O transparent conductors. Nanomaterials 11:1–11CrossRef García-Fernández J, Torres-Pardo A, Ramírez-Castellanos J, Rossell MD, González-Calbet JM (2021) Evaluation of the nanodomain structure in In-Zn-O transparent conductors. Nanomaterials 11:1–11CrossRef
15.
Zurück zum Zitat Wu L, Zhang XT, Wang Z, Liang Y, Xu H (2008) Synthesis and optical properties of ZnO nanowires with a modulated structure. J Phys D Appl Phys 41:195406CrossRef Wu L, Zhang XT, Wang Z, Liang Y, Xu H (2008) Synthesis and optical properties of ZnO nanowires with a modulated structure. J Phys D Appl Phys 41:195406CrossRef
16.
Zurück zum Zitat Li DP, Wang GZ, Han XH (2009) Raman property of In doped ZnO superlattice nanoribbons. J Phys D Appl Phys 42:175308CrossRef Li DP, Wang GZ, Han XH (2009) Raman property of In doped ZnO superlattice nanoribbons. J Phys D Appl Phys 42:175308CrossRef
17.
Zurück zum Zitat Orikasa Y, Hayashi N, Muranaka S (2008) Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by rf magnetron sputtering. J Appl Phys 103:113703CrossRef Orikasa Y, Hayashi N, Muranaka S (2008) Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by rf magnetron sputtering. J Appl Phys 103:113703CrossRef
18.
Zurück zum Zitat Ohashi N, Sakaguchi I, Hishita S, Adachi Y, Hareda H, Ogino T (2002) Crystallinity of In2O3(ZnO)5 films by epitaxial growth with a self-buffer-layer. J Appl Phys 92:2378–2384CrossRef Ohashi N, Sakaguchi I, Hishita S, Adachi Y, Hareda H, Ogino T (2002) Crystallinity of In2O3(ZnO)5 films by epitaxial growth with a self-buffer-layer. J Appl Phys 92:2378–2384CrossRef
19.
Zurück zum Zitat Jie J, Wang G, Han X, Hou JG (2004) Synthesis and characterization of ZnO: in nanowires with superlattice structure. J Phys Chem B 108:17027–17031CrossRef Jie J, Wang G, Han X, Hou JG (2004) Synthesis and characterization of ZnO: in nanowires with superlattice structure. J Phys Chem B 108:17027–17031CrossRef
20.
Zurück zum Zitat Moriga T, Kammler DR, Mason TO, Palmer GB, Poeppelmeier KR (1999) Homologous compounds in the Indium–Gallium–Zinc oxide system. J Am Ceram Soc 82:2705–2710CrossRef Moriga T, Kammler DR, Mason TO, Palmer GB, Poeppelmeier KR (1999) Homologous compounds in the Indium–Gallium–Zinc oxide system. J Am Ceram Soc 82:2705–2710CrossRef
21.
Zurück zum Zitat Wang Q, Yan Y, Zeng Y, Lu Y, Chen L, Jiang Y (2016) Free-standing undoped ZnO microtubes with rich and stable shallow acceptors. Sci Rep 6:27341CrossRef Wang Q, Yan Y, Zeng Y, Lu Y, Chen L, Jiang Y (2016) Free-standing undoped ZnO microtubes with rich and stable shallow acceptors. Sci Rep 6:27341CrossRef
22.
Zurück zum Zitat Wang Q, Yan Y, Qin F et al (2017) A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and microfluidic photodegradation. NPG Asia Mater 9:e442–e442CrossRef Wang Q, Yan Y, Qin F et al (2017) A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and microfluidic photodegradation. NPG Asia Mater 9:e442–e442CrossRef
23.
Zurück zum Zitat Xing C, Liu W, Wang Q, Xu C, Yan Y, Jiang Y (2020) Current-induced thermal tunneling electroluminescence in a single highly compensated semiconductor microrod. Iscience 23:101210CrossRef Xing C, Liu W, Wang Q, Xu C, Yan Y, Jiang Y (2020) Current-induced thermal tunneling electroluminescence in a single highly compensated semiconductor microrod. Iscience 23:101210CrossRef
24.
Zurück zum Zitat Wang Q, Yan Y, Zeng Y, Jiang Y (2017) Experimental and numerical study on growth of high-quality ZnO single-crystal microtubes by optical vapor supersaturated precipitation method. J Cryst Growth 468:638–644CrossRef Wang Q, Yan Y, Zeng Y, Jiang Y (2017) Experimental and numerical study on growth of high-quality ZnO single-crystal microtubes by optical vapor supersaturated precipitation method. J Cryst Growth 468:638–644CrossRef
25.
Zurück zum Zitat Gribchenkova NA, Alikhanyan AS (2019) Thermodynamics of the heterogeneous equilibria in the In2O3–ZnO system by Knudsen effusion mass spectrometry. J Alloy Compd 778:77–82CrossRef Gribchenkova NA, Alikhanyan AS (2019) Thermodynamics of the heterogeneous equilibria in the In2O3–ZnO system by Knudsen effusion mass spectrometry. J Alloy Compd 778:77–82CrossRef
26.
Zurück zum Zitat Cui LJ, Ge ZH, Qin P, Feng J (2017) Enhanced thermoelectric properties of In2O3(ZnO)5 intrinsic superlattice ceramics by optimizing the sintering process. RSC Adv 7:49883–49889CrossRef Cui LJ, Ge ZH, Qin P, Feng J (2017) Enhanced thermoelectric properties of In2O3(ZnO)5 intrinsic superlattice ceramics by optimizing the sintering process. RSC Adv 7:49883–49889CrossRef
27.
Zurück zum Zitat Xiang B, Wang P, Zhang X et al (2007) Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett 7:323–328CrossRef Xiang B, Wang P, Zhang X et al (2007) Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett 7:323–328CrossRef
28.
Zurück zum Zitat Yuan GD, Zhang WJ, Jie JS et al (2008) p-type ZnO nanowire arrays. Nano Lett 8:2591–2597CrossRef Yuan GD, Zhang WJ, Jie JS et al (2008) p-type ZnO nanowire arrays. Nano Lett 8:2591–2597CrossRef
29.
Zurück zum Zitat Liu W, Xiu F, Sun K, Xie Y-H et al (2010) Na-Doped p-type ZnO microwires. J Am Chem Soc 132:2498–2499CrossRef Liu W, Xiu F, Sun K, Xie Y-H et al (2010) Na-Doped p-type ZnO microwires. J Am Chem Soc 132:2498–2499CrossRef
30.
Zurück zum Zitat Kokh KA, AtuchinVV GTA, Kuratieva NV, Pervukhina NV, Surovtsev NV (2014) Microstructural and vibrational properties of PVT grown Sb2Te3 crystals. Solid State Commun 177:16–19CrossRef Kokh KA, AtuchinVV GTA, Kuratieva NV, Pervukhina NV, Surovtsev NV (2014) Microstructural and vibrational properties of PVT grown Sb2Te3 crystals. Solid State Commun 177:16–19CrossRef
31.
Zurück zum Zitat Atuchin VV, Borisov SV, Gavrilova TA, Kokh KA, Kuratieva NV, Pervukhina NV (2016) Physical vapor transport growth and morphology of Bi2Se3 microcrystals. Particuology 26:119–122CrossRef Atuchin VV, Borisov SV, Gavrilova TA, Kokh KA, Kuratieva NV, Pervukhina NV (2016) Physical vapor transport growth and morphology of Bi2Se3 microcrystals. Particuology 26:119–122CrossRef
32.
Zurück zum Zitat Atuchin VV, Gavrilova TA, Grigorieva TI, Kuratieva KA, Pervukhina NV, Surovtsev NV (2011) Sublimation growth and vibrational microspectrometry of α-MoO3 single crystals. J Cryst Growth 319:987–990CrossRef Atuchin VV, Gavrilova TA, Grigorieva TI, Kuratieva KA, Pervukhina NV, Surovtsev NV (2011) Sublimation growth and vibrational microspectrometry of α-MoO3 single crystals. J Cryst Growth 319:987–990CrossRef
33.
Zurück zum Zitat Kimizuka N, Isobe M, Nakamura M (1995) Syntheses and single-crystal data of homologous compounds, In2O3(ZnO)m (m=3,4 and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m=7,8,9 and 16) in the In2O3-ZnGa2O4-ZnO system. J Solid State Chem 116:170–178CrossRef Kimizuka N, Isobe M, Nakamura M (1995) Syntheses and single-crystal data of homologous compounds, In2O3(ZnO)m (m=3,4 and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m=7,8,9 and 16) in the In2O3-ZnGa2O4-ZnO system. J Solid State Chem 116:170–178CrossRef
34.
Zurück zum Zitat Wu L, Li Q, Zhang X, Zhai T, Bando Y, Golberg D (2011) Enhanced field emission performance of Ga-doped In2O3(ZnO)3 superlattice nanobelts. J Phys Chem C 115:24564–24568CrossRef Wu L, Li Q, Zhang X, Zhai T, Bando Y, Golberg D (2011) Enhanced field emission performance of Ga-doped In2O3(ZnO)3 superlattice nanobelts. J Phys Chem C 115:24564–24568CrossRef
35.
Zurück zum Zitat Schmid H, Okunishi E, Mader W (2013) Defect structures in ZnO studied by high-resolution structural and spectroscopic imaging. Ultramicroscopy 127:76–84CrossRef Schmid H, Okunishi E, Mader W (2013) Defect structures in ZnO studied by high-resolution structural and spectroscopic imaging. Ultramicroscopy 127:76–84CrossRef
36.
Zurück zum Zitat Li C, Bando Y, Nakamura M, Onoda M, Kimizuka N (1998) Modulated structures of homologous compounds InMO3(ZnO)m (M=In, Ga; m=Integer) described by four-dimensional superspace group. J Solid State Chem 139:347–355CrossRef Li C, Bando Y, Nakamura M, Onoda M, Kimizuka N (1998) Modulated structures of homologous compounds InMO3(ZnO)m (M=In, Ga; m=Integer) described by four-dimensional superspace group. J Solid State Chem 139:347–355CrossRef
37.
Zurück zum Zitat Cuscó R, Alarcón-Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B, Callahan MJ (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:165202CrossRef Cuscó R, Alarcón-Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B, Callahan MJ (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:165202CrossRef
38.
Zurück zum Zitat Liang X (2015) Remarkable enhancement in the Kapitza resistance and electron potential barrier of chemically modified In2O3(ZnO)9 natural superlattice interfaces. Phys Chem Chem Phys 17:29655–29660CrossRef Liang X (2015) Remarkable enhancement in the Kapitza resistance and electron potential barrier of chemically modified In2O3(ZnO)9 natural superlattice interfaces. Phys Chem Chem Phys 17:29655–29660CrossRef
39.
Zurück zum Zitat Alemán B, García JA, Fernández P, Piqueras J (2013) Luminescence and Raman study of Zn4In2O7 nanobelts and plates. Superlattice Microst 56:1–7CrossRef Alemán B, García JA, Fernández P, Piqueras J (2013) Luminescence and Raman study of Zn4In2O7 nanobelts and plates. Superlattice Microst 56:1–7CrossRef
40.
Zurück zum Zitat Mrabet C, Mahdhi N, Boukhachem A, Amlouk M, Manoubi T (2016) Effects of surface oxygen vacancies content on wettability of zinc oxide nanorods doped with lanthanum. J Alloy Compd 688:122–132CrossRef Mrabet C, Mahdhi N, Boukhachem A, Amlouk M, Manoubi T (2016) Effects of surface oxygen vacancies content on wettability of zinc oxide nanorods doped with lanthanum. J Alloy Compd 688:122–132CrossRef
41.
Zurück zum Zitat Margueron S, Pokorny J, Skiadopoulou S et al (2016) Optical and vibrational properties of (ZnO)kIn2O3 natural superlattice nanostructures. J Appl Phys 119:1–10CrossRef Margueron S, Pokorny J, Skiadopoulou S et al (2016) Optical and vibrational properties of (ZnO)kIn2O3 natural superlattice nanostructures. J Appl Phys 119:1–10CrossRef
42.
Zurück zum Zitat Maldonado A, Olvera MDLL, Guerra ST, Asomoza R (2004) Indium-doped zinc oxide thin films deposited by chemical spray starting from zinc acetylacetonate: effect of the alcohol and substrate temperature. Sol Energ Mat Sol C 82:75–84CrossRef Maldonado A, Olvera MDLL, Guerra ST, Asomoza R (2004) Indium-doped zinc oxide thin films deposited by chemical spray starting from zinc acetylacetonate: effect of the alcohol and substrate temperature. Sol Energ Mat Sol C 82:75–84CrossRef
43.
Zurück zum Zitat Yang Q, Lou L, Wang G (2017) Optical properties of indium doped ZnO planar superlattice nanoribbons. Phys E 89:124–129CrossRef Yang Q, Lou L, Wang G (2017) Optical properties of indium doped ZnO planar superlattice nanoribbons. Phys E 89:124–129CrossRef
44.
Zurück zum Zitat Wires S, Properties P (2009) Crystal structure of In2O3(ZnO)m superlattice wires and their photoluminescence properties. Cryst Growth Des 3:3–6 Wires S, Properties P (2009) Crystal structure of In2O3(ZnO)m superlattice wires and their photoluminescence properties. Cryst Growth Des 3:3–6
45.
Zurück zum Zitat Walsh A, Da Silva JLF, Yan Y et al (2009) Origin of electronic and optical trends in ternary In2O3(ZnO)n transparent conducting oxides (n=1,3,5): Hybrid density functional theory calculations. Phys Rev B 79:2–4CrossRef Walsh A, Da Silva JLF, Yan Y et al (2009) Origin of electronic and optical trends in ternary In2O3(ZnO)n transparent conducting oxides (n=1,3,5): Hybrid density functional theory calculations. Phys Rev B 79:2–4CrossRef
46.
Zurück zum Zitat Teke A, Özgür Ü, Doǧan S et al (2004) Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys Rev B 70:1–10CrossRef Teke A, Özgür Ü, Doǧan S et al (2004) Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys Rev B 70:1–10CrossRef
47.
Zurück zum Zitat Shibata H (1998) Negative thermal quenching curves in photoluminescence of solids. Jpn J Appl Phys 37:550–553CrossRef Shibata H (1998) Negative thermal quenching curves in photoluminescence of solids. Jpn J Appl Phys 37:550–553CrossRef
48.
Zurück zum Zitat Leroux M, Grandjean N, Beaumont B et al (1999) Temperature quenching of photoluminescence intensities in undoped and doped GaN. J Appl Phys 86:3721–3728CrossRef Leroux M, Grandjean N, Beaumont B et al (1999) Temperature quenching of photoluminescence intensities in undoped and doped GaN. J Appl Phys 86:3721–3728CrossRef
49.
Zurück zum Zitat Fonoberov VA, Alim KA, Balandin AA, Xiu F, Liu J (2006) Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys Rev B Phys 73:1–9CrossRef Fonoberov VA, Alim KA, Balandin AA, Xiu F, Liu J (2006) Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys Rev B Phys 73:1–9CrossRef
50.
Zurück zum Zitat Meyer BK, Alves H, Hofmann DM, Kriegseis W et al (2004) Bound exciton and donor-acceptor pair recombinations in ZnO. Phys Status Solidi B 241:231–260CrossRef Meyer BK, Alves H, Hofmann DM, Kriegseis W et al (2004) Bound exciton and donor-acceptor pair recombinations in ZnO. Phys Status Solidi B 241:231–260CrossRef
51.
Zurück zum Zitat Krustok J, Collan H, Hjelt K (1997) Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? J Appl Phys 81:1442–1445CrossRef Krustok J, Collan H, Hjelt K (1997) Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? J Appl Phys 81:1442–1445CrossRef
52.
Zurück zum Zitat Özgür Ü, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:1–103CrossRef Özgür Ü, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:1–103CrossRef
53.
Zurück zum Zitat Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J (2005) Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl Phys Lett 86:86–89 Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J (2005) Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl Phys Lett 86:86–89
54.
Zurück zum Zitat Chen Z, Wu N, Shan Z, Zhao M, Li S, Jiang CB, Chyu MK, Mao SX (2005) Effect of N2 flow rate on morphology and structure of ZnO nanocrystals synthesized via vapor deposition. Scripta Mater 52:63–67CrossRef Chen Z, Wu N, Shan Z, Zhao M, Li S, Jiang CB, Chyu MK, Mao SX (2005) Effect of N2 flow rate on morphology and structure of ZnO nanocrystals synthesized via vapor deposition. Scripta Mater 52:63–67CrossRef
55.
Zurück zum Zitat Wang Q, Yang LX, Liu BY, Yan YZ, Chen F, Jiang YJ (2020) Thermal regulation mechanism of photoluminescence in intrinsic acceptor-rich ZnO microtube. Acta Phys Sin 69:197701CrossRef Wang Q, Yang LX, Liu BY, Yan YZ, Chen F, Jiang YJ (2020) Thermal regulation mechanism of photoluminescence in intrinsic acceptor-rich ZnO microtube. Acta Phys Sin 69:197701CrossRef
56.
Zurück zum Zitat Wang J, Gong M, Guo GC, He L (2012) Temperature dependent empirical pseudopotential theory for self-assembled quantum dots. J Phys Condens Mat 24:475302CrossRef Wang J, Gong M, Guo GC, He L (2012) Temperature dependent empirical pseudopotential theory for self-assembled quantum dots. J Phys Condens Mat 24:475302CrossRef
57.
Zurück zum Zitat Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154CrossRef Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154CrossRef
58.
Zurück zum Zitat Malochkin O, Seo WS, Koumoto K (2004) Thermoelectric properties of (ZnO)5In2O3 single crystal grown by a flux method. Jpn J Appl Phys 43:L194–L196CrossRef Malochkin O, Seo WS, Koumoto K (2004) Thermoelectric properties of (ZnO)5In2O3 single crystal grown by a flux method. Jpn J Appl Phys 43:L194–L196CrossRef
Metadaten
Titel
Free-standing In2O3(ZnO)m superlattice microplates grown by optical vapor supersaturated precipitation
verfasst von
Yimin Liao
Yinzhou Yan
Lixue Yang
Yongman Pan
Yue Lu
Fei Chen
Qiang Wang
Yijian Jiang
Publikationsdatum
25.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06175-8

Weitere Artikel der Ausgabe 24/2021

Journal of Materials Science 24/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.