Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 4/2019

10.11.2018 | Original Article

Frequency-induced morphology alterations in microconfined biological cells

verfasst von: Hritwick Banerjee, Bibhas Roy, Kaustav Chaudhury, Babji Srinivasan, Suman Chakraborty, Hongliang Ren

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low-intensity therapeutic ultrasound has demonstrated an impetus in bone signaling and tissue healing for decades now. Though this technology is clinically well proven, still there are breaches in studies to understand the fundamental principle of how osteoblast tissue regenerates physiologically at the cellular level with ultrasound interaction as a form of acoustic wave stimuli. Through this article, we illustrate an analysis for cytomechanical changes of cell membrane periphery as a basic first physical principle for facilitating late downstream biochemical pathways. With the help of in situ single-cell direct analysis in a microfluidic confinement, we demonstrate that alteration of low-intensity pulse ultrasound (LIPUS) frequency would physically perturb cell membrane and establish inherent cell oscillation. We experimentally demonstrate here that, at LIPUS resonance near 1.7 MHz (during 1–3 MHz alteration), cell membrane area would expand to 6.85 ± 0.7% during ultrasound exposure while it contracts 44.68 ± 0.8% in post actuation. Conversely, cell cross-sectional area change (%) from its previous morphology during and after switching off LIPUS was reversibly different before and after resonance. For instance, at 1.5 MHz, LIPUS exposure produced 1.44 ± 0.5% expansion while in contrast 2 MHz instigates 1.6 ± 0.3% contraction. We conclude that alteration of LIPUS frequency from 1–3 MHz keeping other ultrasound parameters like exposure time, pulse repetition frequency (PRF), etc., constant, if applied to a microconfined biological single living cell, would perturb physical structure reversibly based on the system resonance during and post exposure ultrasound pulsing. We envision, in the near future, our results would constitute the foundation of mechanistic effects of low-intensity therapeutic ultrasound and its allied potential in medical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lowry WE, Quan WL (2010) Roadblocks en route to the clinical application of induced pluripotent stem cells. J Cell Sci 0(5):643–651CrossRef Lowry WE, Quan WL (2010) Roadblocks en route to the clinical application of induced pluripotent stem cells. J Cell Sci 0(5):643–651CrossRef
2.
Zurück zum Zitat Haar GT (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93(1):111–129PubMed Haar GT (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93(1):111–129PubMed
3.
Zurück zum Zitat Wood RW, Loomis AL (1927) Xxxviii. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4(22):417–436CrossRef Wood RW, Loomis AL (1927) Xxxviii. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4(22):417–436CrossRef
4.
Zurück zum Zitat Baker KG, Robertson VJ, Duck FA (2001) A review of therapeutic ultrasound: biophysical effects. Phys Ther 81(7):1351–1358PubMed Baker KG, Robertson VJ, Duck FA (2001) A review of therapeutic ultrasound: biophysical effects. Phys Ther 81(7):1351–1358PubMed
5.
Zurück zum Zitat Speed CA (2001) Therapeutic ultrasound in soft tissue lesions. Rheumatology 40(12):1331–1336PubMedCrossRef Speed CA (2001) Therapeutic ultrasound in soft tissue lesions. Rheumatology 40(12):1331–1336PubMedCrossRef
6.
Zurück zum Zitat Artho PA, Thyne JG, Warring BP, Willis CD, Brismee J-M, Latman NS (2002) A calibration study of therapeutic ultrasound units. Phys Ther 82(3):257–263PubMed Artho PA, Thyne JG, Warring BP, Willis CD, Brismee J-M, Latman NS (2002) A calibration study of therapeutic ultrasound units. Phys Ther 82(3):257–263PubMed
7.
Zurück zum Zitat Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13 (4):436–448PubMedCrossRef Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13 (4):436–448PubMedCrossRef
8.
Zurück zum Zitat Saini V, Yadav S, McCormick S (2011) Low-intensity pulsed ultrasound modulates shear stress induced pghs-2 expression and pge2 synthesis in mlo-y4 osteocyte-like cells. Ann Biomed Eng 39(1):378–393PubMedCrossRef Saini V, Yadav S, McCormick S (2011) Low-intensity pulsed ultrasound modulates shear stress induced pghs-2 expression and pge2 synthesis in mlo-y4 osteocyte-like cells. Ann Biomed Eng 39(1):378–393PubMedCrossRef
10.
11.
Zurück zum Zitat Tabuchi Y, Ando H, Takasaki I, Feril LB, Zhao Q-L, Ogawa R, Kudo N, Tachibana K, Kondo T (2007) Identification of genes responsive to low intensity pulsed ultrasound in a human leukemia cell line molt-4. Cancer Lett 246(1):149–156PubMedCrossRef Tabuchi Y, Ando H, Takasaki I, Feril LB, Zhao Q-L, Ogawa R, Kudo N, Tachibana K, Kondo T (2007) Identification of genes responsive to low intensity pulsed ultrasound in a human leukemia cell line molt-4. Cancer Lett 246(1):149–156PubMedCrossRef
12.
Zurück zum Zitat de Albornoz PM, Khanna A, Longo UG, Forriol F, Maffulli N (2011) The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing. Br Med Bull 100(1):39–57CrossRef de Albornoz PM, Khanna A, Longo UG, Forriol F, Maffulli N (2011) The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing. Br Med Bull 100(1):39–57CrossRef
13.
Zurück zum Zitat Cermik D, Karaca M, Taylor HS (2001) Hoxa10 expression is repressed by progesterone in the myometrium: differential tissue-specific regulation of hox gene expression in the reproductive tract. J Clin Endocrinol Metab 86 (7):3387–3392PubMed Cermik D, Karaca M, Taylor HS (2001) Hoxa10 expression is repressed by progesterone in the myometrium: differential tissue-specific regulation of hox gene expression in the reproductive tract. J Clin Endocrinol Metab 86 (7):3387–3392PubMed
14.
Zurück zum Zitat Zacherl M, Gruber G, Radl R, Rehak PH, Windhager R (2009) No midterm benefit from low intensity pulsed ultrasound after chevron osteotomy for hallux valgus. Ultrasound Med Biol 35(8):1290–1297PubMedCrossRef Zacherl M, Gruber G, Radl R, Rehak PH, Windhager R (2009) No midterm benefit from low intensity pulsed ultrasound after chevron osteotomy for hallux valgus. Ultrasound Med Biol 35(8):1290–1297PubMedCrossRef
15.
Zurück zum Zitat Tan MK, Friend JR, Yeo LY (2009) Interfacial jetting phenomena induced by focused surface vibrations. Phys Rev Lett 103(2):024501PubMedCrossRef Tan MK, Friend JR, Yeo LY (2009) Interfacial jetting phenomena induced by focused surface vibrations. Phys Rev Lett 103(2):024501PubMedCrossRef
16.
Zurück zum Zitat Shaw A, Hodnett M (2008) Calibration and measurement issues for therapeutic ultrasound. Ultrasonics 48(4):234–252PubMedCrossRef Shaw A, Hodnett M (2008) Calibration and measurement issues for therapeutic ultrasound. Ultrasonics 48(4):234–252PubMedCrossRef
17.
Zurück zum Zitat Hauser J, Hauser M, Muhr G, Esenwein S (2009) Ultrasound-induced modifications of cytoskeletal components in osteoblast-like saos-2 cells. J Orthop Res 27(3):286–294PubMedCrossRef Hauser J, Hauser M, Muhr G, Esenwein S (2009) Ultrasound-induced modifications of cytoskeletal components in osteoblast-like saos-2 cells. J Orthop Res 27(3):286–294PubMedCrossRef
18.
Zurück zum Zitat Mizrahi N, Zhou EH, Lenormand G, Krishnan R, Weihs D, Butler JP, Weitz DA, Fredberg JJ, Kimmel E (2012) Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter 8(8):2438–2443PubMedPubMedCentralCrossRef Mizrahi N, Zhou EH, Lenormand G, Krishnan R, Weihs D, Butler JP, Weitz DA, Fredberg JJ, Kimmel E (2012) Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter 8(8):2438–2443PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Noriega S, Hasanova G, Subramanian A (2013) The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices. Cells Tissues Organs 197(1):14–26PubMedCrossRef Noriega S, Hasanova G, Subramanian A (2013) The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices. Cells Tissues Organs 197(1):14–26PubMedCrossRef
20.
Zurück zum Zitat Zhang S, Cheng J, Qin Y-X (2012) Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PLoS One 7(6):e38343PubMedPubMedCentralCrossRef Zhang S, Cheng J, Qin Y-X (2012) Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PLoS One 7(6):e38343PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Mahoney CM, Morgan MR, Harrison A, Humphries MJ, Bass MD (2009) Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J Biol Chem 284(13):8898–8909PubMedPubMedCentralCrossRef Mahoney CM, Morgan MR, Harrison A, Humphries MJ, Bass MD (2009) Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J Biol Chem 284(13):8898–8909PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG (2004) Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279(52):54463–54469PubMedCrossRef Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG (2004) Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279(52):54463–54469PubMedCrossRef
24.
Zurück zum Zitat Hu Y, Wan JMF, Alfred CH (2014) Cytomechanical perturbations during low-intensity ultrasound pulsing. Ultrasound Med Biol 40(7):1587–1598PubMedCrossRef Hu Y, Wan JMF, Alfred CH (2014) Cytomechanical perturbations during low-intensity ultrasound pulsing. Ultrasound Med Biol 40(7):1587–1598PubMedCrossRef
25.
Zurück zum Zitat Banerjee H (2014) Frequency driven alteration in cellular morphology during ultrasound pulsing in a microfluidic confinement. PhD thesis, Indian Institute of Technology, Gandhinagar Banerjee H (2014) Frequency driven alteration in cellular morphology during ultrasound pulsing in a microfluidic confinement. PhD thesis, Indian Institute of Technology, Gandhinagar
26.
Zurück zum Zitat Das T, Chakraborty S (2013) Perspective: flicking with flow: can microfluidics revolutionize the cancer research? Biomicrofluidics 7(1):011811PubMedCentralCrossRef Das T, Chakraborty S (2013) Perspective: flicking with flow: can microfluidics revolutionize the cancer research? Biomicrofluidics 7(1):011811PubMedCentralCrossRef
27.
Zurück zum Zitat Banerjee H, Suhail M, Ren H (2018) Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges. Biomimetics 3(3):15PubMedCentralCrossRef Banerjee H, Suhail M, Ren H (2018) Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges. Biomimetics 3(3):15PubMedCentralCrossRef
28.
Zurück zum Zitat Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93 (1):384–398PubMedCrossRef Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93 (1):384–398PubMedCrossRef
29.
Zurück zum Zitat Duck FA (2007) Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol 93(1):176–191PubMedCrossRef Duck FA (2007) Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol 93(1):176–191PubMedCrossRef
30.
Zurück zum Zitat Das T, Maiti TK, Chakraborty S (2011) Augmented stress-responsive characteristics of cell lines in narrow confinements. Integr Biol 3(6):684–695CrossRef Das T, Maiti TK, Chakraborty S (2011) Augmented stress-responsive characteristics of cell lines in narrow confinements. Integr Biol 3(6):684–695CrossRef
31.
Zurück zum Zitat Santini MT, Rainaldi G, Romano R, Ferrante A, Clemente S, Motta A, Indovina PL (2004) Mg-63 human osteosarcoma cells grown in monolayer and as three-dimensional tumor spheroids present a different metabolic profile: a 1h nmr study. FEBS Lett 557(1–3):148–154PubMedCrossRef Santini MT, Rainaldi G, Romano R, Ferrante A, Clemente S, Motta A, Indovina PL (2004) Mg-63 human osteosarcoma cells grown in monolayer and as three-dimensional tumor spheroids present a different metabolic profile: a 1h nmr study. FEBS Lett 557(1–3):148–154PubMedCrossRef
33.
Zurück zum Zitat Feril LB, Kondo T, Cui Z-G, Tabuchi Y, Zhao Q-L, Ando H, Misaki T, Yoshikawa H, Umemura S-I (2005) Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett 221(2):145–152PubMedCrossRef Feril LB, Kondo T, Cui Z-G, Tabuchi Y, Zhao Q-L, Ando H, Misaki T, Yoshikawa H, Umemura S-I (2005) Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett 221(2):145–152PubMedCrossRef
35.
Zurück zum Zitat Li X, Kierfeld J, Lipowsky R (2009) Actin polymerization and depolymerization coupled to cooperative hydrolysis. Phys Rev Lett 103(4):048102PubMedCrossRef Li X, Kierfeld J, Lipowsky R (2009) Actin polymerization and depolymerization coupled to cooperative hydrolysis. Phys Rev Lett 103(4):048102PubMedCrossRef
36.
Zurück zum Zitat Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal JJ, Chock PB (2001) Reversible glutathionylation regulates actin polymerization in a431 cells. J Biol Chem 276(51):47763–47766PubMedCrossRef Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal JJ, Chock PB (2001) Reversible glutathionylation regulates actin polymerization in a431 cells. J Biol Chem 276(51):47763–47766PubMedCrossRef
37.
Zurück zum Zitat Yonezawa Naoto, Nishida E, Sakai H (1985) Ph control of actin polymerization by cofilin. J Biol Chem 260(27):14410–14412PubMed Yonezawa Naoto, Nishida E, Sakai H (1985) Ph control of actin polymerization by cofilin. J Biol Chem 260(27):14410–14412PubMed
38.
Zurück zum Zitat Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146(4):1611–1621PubMedPubMedCentralCrossRef Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146(4):1611–1621PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Krasovitski B, Frenkel V, Shoham S, Kimmel E (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci 108(8):3258–3263PubMedCrossRefPubMedCentral Krasovitski B, Frenkel V, Shoham S, Kimmel E (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci 108(8):3258–3263PubMedCrossRefPubMedCentral
40.
Zurück zum Zitat Van der Meer SM, Versluis M, Lohse D, Chin CT, Bouakaz A, De Jong N (2004) The resonance frequency of sonovue/spl trade/as observed by high-speed optical imaging. In: Ultrasonics symposium IEEE, vol 1, p 2004 Van der Meer SM, Versluis M, Lohse D, Chin CT, Bouakaz A, De Jong N (2004) The resonance frequency of sonovue/spl trade/as observed by high-speed optical imaging. In: Ultrasonics symposium IEEE, vol 1, p 2004
41.
Zurück zum Zitat Zinin PV, Allen JS III (2009) Deformation of biological cells in the acoustic field of an oscillating bubble. Phys Rev E 79(2): 021910CrossRef Zinin PV, Allen JS III (2009) Deformation of biological cells in the acoustic field of an oscillating bubble. Phys Rev E 79(2): 021910CrossRef
42.
Zurück zum Zitat Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75(4):2038–2049PubMedPubMedCentralCrossRef Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75(4):2038–2049PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Hopkins PM, Bodenham AR, Reeves ST (2008) Practical ultrasound in anesthesia for critical care and pain management. Taylor & Francis US Hopkins PM, Bodenham AR, Reeves ST (2008) Practical ultrasound in anesthesia for critical care and pain management. Taylor & Francis US
44.
Zurück zum Zitat Iwashina T, Mochida J, Miyazaki T, Watanabe T, Iwabuchi S, Ando K, Hotta T, Sakai D (2006) Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate. Biomaterials 27(3):354–361PubMedCrossRef Iwashina T, Mochida J, Miyazaki T, Watanabe T, Iwabuchi S, Ando K, Hotta T, Sakai D (2006) Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate. Biomaterials 27(3):354–361PubMedCrossRef
45.
Zurück zum Zitat Khan Y, Laurencin CT (2008) Fracture repair with ultrasound: clinical and cell-based evaluation. JBJS 90((Supplement_1)):138–144CrossRef Khan Y, Laurencin CT (2008) Fracture repair with ultrasound: clinical and cell-based evaluation. JBJS 90((Supplement_1)):138–144CrossRef
46.
Zurück zum Zitat Norvell SM, Alvarez M, Bidwell JP, Pavalko FM (2004) Fluid shear stress induces β-catenin signaling in osteoblasts. Calcif Tissue Int 75(5):396–404PubMedCrossRef Norvell SM, Alvarez M, Bidwell JP, Pavalko FM (2004) Fluid shear stress induces β-catenin signaling in osteoblasts. Calcif Tissue Int 75(5):396–404PubMedCrossRef
47.
Zurück zum Zitat Mishra D (2013) Osteoblast microtissues as profunctional modules for bone tissue engineering applications. PhD thesis, IIT Kharagpur Mishra D (2013) Osteoblast microtissues as profunctional modules for bone tissue engineering applications. PhD thesis, IIT Kharagpur
48.
Zurück zum Zitat Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S (2001) Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res 16(4):671–680PubMedCrossRef Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S (2001) Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res 16(4):671–680PubMedCrossRef
49.
Zurück zum Zitat Iwai T, Harada Y, Imura K, Iwabuchi S, Murai J, Hiramatsu K, Myoui A, Yoshikawa H, Tsumaki N (2007) Low-intensity pulsed ultrasound increases bone ingrowth into porous hydroxyapatite ceramic. J Bone Miner Metab 25(6):392–399PubMedCrossRef Iwai T, Harada Y, Imura K, Iwabuchi S, Murai J, Hiramatsu K, Myoui A, Yoshikawa H, Tsumaki N (2007) Low-intensity pulsed ultrasound increases bone ingrowth into porous hydroxyapatite ceramic. J Bone Miner Metab 25(6):392–399PubMedCrossRef
50.
Zurück zum Zitat Hongmei Yu, Meyvantsson I, Shkel IA, Beebe DJ (2005) Diffusion dependent cell behavior in microenvironments. Lab Chip 5(10):1089–1095CrossRef Hongmei Yu, Meyvantsson I, Shkel IA, Beebe DJ (2005) Diffusion dependent cell behavior in microenvironments. Lab Chip 5(10):1089–1095CrossRef
51.
Zurück zum Zitat Yang L, Effler JC, Kutscher BL, Sullivan SE, Robinson DN, Iglesias PA (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2(1):68PubMedPubMedCentralCrossRef Yang L, Effler JC, Kutscher BL, Sullivan SE, Robinson DN, Iglesias PA (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2(1):68PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Zohar O, Ikeda M, Shinagawa H, Inoue H, Nakamura H, Elbaum D, Alkon DL, Yoshioka T (1998) Thermal imaging of receptor-activated heat production in single cells. Biophys J 74(1):82– 89PubMedPubMedCentralCrossRef Zohar O, Ikeda M, Shinagawa H, Inoue H, Nakamura H, Elbaum D, Alkon DL, Yoshioka T (1998) Thermal imaging of receptor-activated heat production in single cells. Biophys J 74(1):82– 89PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12(6):1014–1021PubMedCrossRef Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12(6):1014–1021PubMedCrossRef
54.
Zurück zum Zitat Wells PNT (1975) Absorption and dispersion of ultrasound in biological tissue. Ultrasound Med Biol 1 (4):369–376PubMedCrossRef Wells PNT (1975) Absorption and dispersion of ultrasound in biological tissue. Ultrasound Med Biol 1 (4):369–376PubMedCrossRef
55.
Zurück zum Zitat van Wamel A, Bouakaz A, Versluis M, de Jong N (2004) Micromanipulation of endothelial cells: ultrasound-microbubble-cell interaction. Ultrasound in Med Biol 3(9):1255–1258CrossRef van Wamel A, Bouakaz A, Versluis M, de Jong N (2004) Micromanipulation of endothelial cells: ultrasound-microbubble-cell interaction. Ultrasound in Med Biol 3(9):1255–1258CrossRef
56.
Zurück zum Zitat Mundi R, Petis S, Kaloty R, Shetty V, Bhandari M (2009) Low-intensity pulsed ultrasound: fracture healing. Indian Journal of Orthopaedics 43(2):132PubMedPubMedCentralCrossRef Mundi R, Petis S, Kaloty R, Shetty V, Bhandari M (2009) Low-intensity pulsed ultrasound: fracture healing. Indian Journal of Orthopaedics 43(2):132PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Physical Rev E 56(3):2924CrossRef Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Physical Rev E 56(3):2924CrossRef
58.
Zurück zum Zitat Pounder NM, Harrison AJ (2008) Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48(4):330–338PubMedCrossRef Pounder NM, Harrison AJ (2008) Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48(4):330–338PubMedCrossRef
59.
Zurück zum Zitat Xing J (2016) Design of low-intensity pulsed ultrasound device intensity sensor and its application to enhance vaccine production. PhD thesis, University of Alberta Xing J (2016) Design of low-intensity pulsed ultrasound device intensity sensor and its application to enhance vaccine production. PhD thesis, University of Alberta
60.
Zurück zum Zitat Fávaro-Pípi E, Feitosa SM, Ribeiro DA, Bossini P, Oliveira P, Parizotto NA, Renno ACM (2010) Comparative study of the effects of low-intensity pulsed ultrasound and low-level laser therapy on bone defects in tibias of rats. Lasers Med Sci 25(5):727–732PubMedCrossRef Fávaro-Pípi E, Feitosa SM, Ribeiro DA, Bossini P, Oliveira P, Parizotto NA, Renno ACM (2010) Comparative study of the effects of low-intensity pulsed ultrasound and low-level laser therapy on bone defects in tibias of rats. Lasers Med Sci 25(5):727–732PubMedCrossRef
61.
Zurück zum Zitat Gebauer D, Mayr E, Orthner E, Ryaby JP (2005) Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound in Med Biol 31(10):1391–1402CrossRef Gebauer D, Mayr E, Orthner E, Ryaby JP (2005) Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound in Med Biol 31(10):1391–1402CrossRef
62.
Zurück zum Zitat Schuster A, Schwab T, Bischof M, Klotz M, Lemor R, Degel C, Schäfer K-H (2013) Cell specific ultrasound effects are dose and frequency dependent. Annals of Anatomy-Anatomischer Anzeiger 195(1):57–67CrossRef Schuster A, Schwab T, Bischof M, Klotz M, Lemor R, Degel C, Schäfer K-H (2013) Cell specific ultrasound effects are dose and frequency dependent. Annals of Anatomy-Anatomischer Anzeiger 195(1):57–67CrossRef
63.
Zurück zum Zitat Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IRS (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31(4):623– 634PubMedPubMedCentralCrossRef Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IRS (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31(4):623– 634PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Kopechek JA, Kim H, McPherson DD, Holland CK (2010) Calibration of the 1-mhz sonitron ultrasound system. Ultrasound in Med Biol 36(10):1762–1766CrossRef Kopechek JA, Kim H, McPherson DD, Holland CK (2010) Calibration of the 1-mhz sonitron ultrasound system. Ultrasound in Med Biol 36(10):1762–1766CrossRef
65.
Zurück zum Zitat Leskinen JJ, Hynynen K (2012) Study of factors affecting the magnitude and nature of ultrasound exposure with in vitro set-ups. Ultrasound in Med Biol 38(5):777–794CrossRef Leskinen JJ, Hynynen K (2012) Study of factors affecting the magnitude and nature of ultrasound exposure with in vitro set-ups. Ultrasound in Med Biol 38(5):777–794CrossRef
66.
Zurück zum Zitat Pietak A, Levin M (2017) Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. Journal of The Royal Society Interface 14(134):20170425PubMedCentralCrossRef Pietak A, Levin M (2017) Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. Journal of The Royal Society Interface 14(134):20170425PubMedCentralCrossRef
67.
Zurück zum Zitat Maddala J, Srinivasan B, Bithi SS, Vanapalli SA, Rengaswamy R (2012) Design of a model-based feedback controller for active sorting and synchronization of droplets in a microfluidic loop. AICHE J 58(7):2120–2130CrossRef Maddala J, Srinivasan B, Bithi SS, Vanapalli SA, Rengaswamy R (2012) Design of a model-based feedback controller for active sorting and synchronization of droplets in a microfluidic loop. AICHE J 58(7):2120–2130CrossRef
68.
Zurück zum Zitat Banerjee H, Srinivasan B (2013) Modelling, optimization and control of droplet based microfluidic technology for single-cell high-throughput screening Banerjee H, Srinivasan B (2013) Modelling, optimization and control of droplet based microfluidic technology for single-cell high-throughput screening
Metadaten
Titel
Frequency-induced morphology alterations in microconfined biological cells
verfasst von
Hritwick Banerjee
Bibhas Roy
Kaustav Chaudhury
Babji Srinivasan
Suman Chakraborty
Hongliang Ren
Publikationsdatum
10.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 4/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1908-y

Weitere Artikel der Ausgabe 4/2019

Medical & Biological Engineering & Computing 4/2019 Zur Ausgabe