Skip to main content
Erschienen in: Journal of Computational Electronics 4/2018

22.08.2018

Fringing-field-based 2-D analytical model for a gate-underlap double-gate TFET

verfasst von: Dip Joti Paul, Md. Abdullah-Al-Kaiser, Md. Shofiqul Islam, Quazi D. M. Khosru

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An analytical model was developed to calculate the potential distribution for a gate-underlap double-gate tunnel FET. The electrostatic potential of the device was derived using the two-dimensional Poisson’s equation, incorporating the fringing electric field in the gate-underlap surface and employing a conformal mapping method. In addition to analytical potential modeling, the electric field and drain current were evaluated to investigate the device performance. Excellent agreement with technology computer-aided design (TCAD) simulation results was observed. The dependence of the ambipolar current on the spacer oxide dielectric constant, spacer length, channel length, and gate material thickness was examined using the proposed model. The effects of the variation of all of these parameters were well predicted, and the model reveals that use of a low-\(\kappa \) spacer dielectric combined with a high-\(\kappa \) gate dielectric results in the minimal ambipolar current for the device.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Solomon, P.M.: Inability of single carrier tunneling barriers to give subthermal subthreshold swings in MOSFETs. IEEE Electron Device Lett. 31, 618–620 (2010)CrossRef Solomon, P.M.: Inability of single carrier tunneling barriers to give subthermal subthreshold swings in MOSFETs. IEEE Electron Device Lett. 31, 618–620 (2010)CrossRef
2.
Zurück zum Zitat Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011)CrossRef Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011)CrossRef
3.
Zurück zum Zitat Sarkar, D., Xie, X., Liu, W., Cao, W., Kang, J., Gong, Y., Kraemer, S., Ajayan, P.M., Banerjee, K.: A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015)CrossRef Sarkar, D., Xie, X., Liu, W., Cao, W., Kang, J., Gong, Y., Kraemer, S., Ajayan, P.M., Banerjee, K.: A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015)CrossRef
4.
Zurück zum Zitat Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014)CrossRef Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014)CrossRef
6.
Zurück zum Zitat Anghel, C., Chilagani, P., Amara, A., Vladimirescu, A.: Tunnel field-effect transistor with increased on-current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96, 122104 (2010)CrossRef Anghel, C., Chilagani, P., Amara, A., Vladimirescu, A.: Tunnel field-effect transistor with increased on-current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96, 122104 (2010)CrossRef
7.
Zurück zum Zitat Ilatikhameneh, H., Tan, Y., Novakovic, B., Klimeck, G., Rahman, R., Appenzeller, J.: Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE J. Explor. Solid State Comput. Devices Circuits 1, 12–18 (2015)CrossRef Ilatikhameneh, H., Tan, Y., Novakovic, B., Klimeck, G., Rahman, R., Appenzeller, J.: Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE J. Explor. Solid State Comput. Devices Circuits 1, 12–18 (2015)CrossRef
8.
Zurück zum Zitat Chen, F.W., Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Rahman, R.: Thickness engineered tunnel field-effect transistors based on phosphorene. IEEE Electron Device Lett. 38, 130–133 (2017)CrossRef Chen, F.W., Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Rahman, R.: Thickness engineered tunnel field-effect transistors based on phosphorene. IEEE Electron Device Lett. 38, 130–133 (2017)CrossRef
9.
Zurück zum Zitat Memisevic, E., Svensson, J., Lind, E., Wernersson, L.E.: InAs/InGaAsSb/GaSb nanowire tunnel field-effect transistors. IEEE Trans. Electron Devices 64, 4746–4751 (2017)CrossRef Memisevic, E., Svensson, J., Lind, E., Wernersson, L.E.: InAs/InGaAsSb/GaSb nanowire tunnel field-effect transistors. IEEE Trans. Electron Devices 64, 4746–4751 (2017)CrossRef
10.
Zurück zum Zitat Abdullah-Al-Kaiser, M., Paul, D.J., Khosru, Q.D.: High on-current and low threshold GaSb-InAs heterostructure dual-material DG tunnel-FET. In: IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 494–497 (2017) Abdullah-Al-Kaiser, M., Paul, D.J., Khosru, Q.D.: High on-current and low threshold GaSb-InAs heterostructure dual-material DG tunnel-FET. In: IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 494–497 (2017)
11.
Zurück zum Zitat Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 2, 187–190 (2014)CrossRef Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 2, 187–190 (2014)CrossRef
12.
Zurück zum Zitat Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57, 2317–2319 (2010)CrossRef Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57, 2317–2319 (2010)CrossRef
13.
Zurück zum Zitat Narang, R., Saxena, M., Gupta, R., Gupta, M.: Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. JSTS J. Semicond. Technol. Sci. 12, 482–491 (2012)CrossRef Narang, R., Saxena, M., Gupta, R., Gupta, M.: Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. JSTS J. Semicond. Technol. Sci. 12, 482–491 (2012)CrossRef
14.
Zurück zum Zitat Anghel, C., Gupta, A., Amara, A., Vladimirescu, A.: 30-nm tunnel FET with improved performance and reduced ambipolar current. IEEE Trans. Electron Devices 58, 1649–1654 (2011)CrossRef Anghel, C., Gupta, A., Amara, A., Vladimirescu, A.: 30-nm tunnel FET with improved performance and reduced ambipolar current. IEEE Trans. Electron Devices 58, 1649–1654 (2011)CrossRef
15.
Zurück zum Zitat Hraziia, A., Vladimirescu, A., Amara, A., Anghel, C.: An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid State Electron. 70, 67–72 (2012)CrossRef Hraziia, A., Vladimirescu, A., Amara, A., Anghel, C.: An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid State Electron. 70, 67–72 (2012)CrossRef
16.
Zurück zum Zitat Zhuge, J., Verhulst, A.S., Vandenberghe, W.G., Dehaene, W., Huang, R., Wang, Y., Groeseneken, G.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26, 085001 (2011)CrossRef Zhuge, J., Verhulst, A.S., Vandenberghe, W.G., Dehaene, W., Huang, R., Wang, Y., Groeseneken, G.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26, 085001 (2011)CrossRef
17.
Zurück zum Zitat Bardon, M.G., Neves, H.P., Puers, R., Van Hoof, C.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57, 827–834 (2010)CrossRef Bardon, M.G., Neves, H.P., Puers, R., Van Hoof, C.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57, 827–834 (2010)CrossRef
18.
Zurück zum Zitat Gholizadeh, M., Hosseini, S.E.: A 2-D analytical model for double-gate tunnel FETs. IEEE Trans. Electron Devices 61, 1494–1500 (2014)CrossRef Gholizadeh, M., Hosseini, S.E.: A 2-D analytical model for double-gate tunnel FETs. IEEE Trans. Electron Devices 61, 1494–1500 (2014)CrossRef
19.
Zurück zum Zitat Graef, M., Holtij, T., Hain, F., Kloes, A., Iñíguez, B.: A 2D closed form model for the electrostatics in hetero-junction double-gate tunnel-FETs for calculation of band-to-band tunneling current. Microelectron. J. 45, 1144–1153 (2014)CrossRef Graef, M., Holtij, T., Hain, F., Kloes, A., Iñíguez, B.: A 2D closed form model for the electrostatics in hetero-junction double-gate tunnel-FETs for calculation of band-to-band tunneling current. Microelectron. J. 45, 1144–1153 (2014)CrossRef
20.
Zurück zum Zitat Lee, M.J., Choi, W.Y.: Analytical model of single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid State Electron. 63, 110–114 (2011)CrossRef Lee, M.J., Choi, W.Y.: Analytical model of single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid State Electron. 63, 110–114 (2011)CrossRef
21.
Zurück zum Zitat Chander, S., Baishya, S.: Two-dimensional model of a heterojunction silicon-on-insulator tunnel field effect transistor. Superlattices Microstruct. 90, 176–183 (2016)CrossRef Chander, S., Baishya, S.: Two-dimensional model of a heterojunction silicon-on-insulator tunnel field effect transistor. Superlattices Microstruct. 90, 176–183 (2016)CrossRef
22.
Zurück zum Zitat Cui, N., Liu, L., Xie, Q., Tan, Z., Liang, R., Wang, J., Xu, J.: A two-dimensional analytical model for tunnel field effect transistor and its applications. Jpn. J. Appl. Phys. 52, 044303 (2013)CrossRef Cui, N., Liu, L., Xie, Q., Tan, Z., Liang, R., Wang, J., Xu, J.: A two-dimensional analytical model for tunnel field effect transistor and its applications. Jpn. J. Appl. Phys. 52, 044303 (2013)CrossRef
23.
Zurück zum Zitat Vishnoi, R., Kumar, M.J.: A pseudo-2D analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61, 2264–2270 (2014)CrossRef Vishnoi, R., Kumar, M.J.: A pseudo-2D analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61, 2264–2270 (2014)CrossRef
24.
Zurück zum Zitat Pandey, P., Vishnoi, R., Kumar, M.J.: A full-range dual material gate tunnel field effect transistor drain current model considering both source and drain depletion region band-to-band tunneling. J. Comput. Electron. 14, 280–287 (2015)CrossRef Pandey, P., Vishnoi, R., Kumar, M.J.: A full-range dual material gate tunnel field effect transistor drain current model considering both source and drain depletion region band-to-band tunneling. J. Comput. Electron. 14, 280–287 (2015)CrossRef
25.
Zurück zum Zitat Paul, D.J., Abdullah-Al-Kaiser, M., Khosru, Q.D.: Comparative study of ambipolar characteristics for short channel tunnel-FETs of different structure. In: IEEE Region 10 Conference (TENCON), pp. 1680–1684 (2017) Paul, D.J., Abdullah-Al-Kaiser, M., Khosru, Q.D.: Comparative study of ambipolar characteristics for short channel tunnel-FETs of different structure. In: IEEE Region 10 Conference (TENCON), pp. 1680–1684 (2017)
26.
Zurück zum Zitat Young, K.K.: Analysis of conduction in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36, 504–506 (1989)CrossRef Young, K.K.: Analysis of conduction in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36, 504–506 (1989)CrossRef
27.
Zurück zum Zitat Bansal, A., Roy, K.: Analytical subthreshold potential distribution model for gate underlap double-gate MOS transistors. IEEE Trans. Electron Devices 54, 1793–1798 (2007)CrossRef Bansal, A., Roy, K.: Analytical subthreshold potential distribution model for gate underlap double-gate MOS transistors. IEEE Trans. Electron Devices 54, 1793–1798 (2007)CrossRef
28.
Zurück zum Zitat Lin, S., Kuo, J.: Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50, 2559–2564 (2003)CrossRef Lin, S., Kuo, J.: Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50, 2559–2564 (2003)CrossRef
29.
Zurück zum Zitat Lin, S.C., Kuo, J.B., Huang, K.T., Sun, S.W.: A closed-form back-gate-bias related inverse narrow-channel effect model for deep-submicron VLSI CMOS devices using shallow trench isolation. IEEE Trans. Electron Devices 47, 725–733 (2000)CrossRef Lin, S.C., Kuo, J.B., Huang, K.T., Sun, S.W.: A closed-form back-gate-bias related inverse narrow-channel effect model for deep-submicron VLSI CMOS devices using shallow trench isolation. IEEE Trans. Electron Devices 47, 725–733 (2000)CrossRef
30.
Zurück zum Zitat Kane, E.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1960)CrossRef Kane, E.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1960)CrossRef
31.
Zurück zum Zitat Chien, N.D., Shih, C.H., Hoa, P.C., Minh, N.H., Hien, D.T.T.: Theoretical evaluation of maximum electric field approximation of direct band-to-band tunneling Kane model for low bandgap semiconductors. J. Phys. Conf. Ser. 726, 012002 (2016)CrossRef Chien, N.D., Shih, C.H., Hoa, P.C., Minh, N.H., Hien, D.T.T.: Theoretical evaluation of maximum electric field approximation of direct band-to-band tunneling Kane model for low bandgap semiconductors. J. Phys. Conf. Ser. 726, 012002 (2016)CrossRef
32.
Zurück zum Zitat Moll, J.L.: Physics of Semiconductors, pp. 252–255. McGraw-Hill, New York (1964)MATH Moll, J.L.: Physics of Semiconductors, pp. 252–255. McGraw-Hill, New York (1964)MATH
33.
Zurück zum Zitat Verhulst, A.S., Leonelli, D., Rooyackers, R., Groeseneken, G.: Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110, 024510 (2011)CrossRef Verhulst, A.S., Leonelli, D., Rooyackers, R., Groeseneken, G.: Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110, 024510 (2011)CrossRef
34.
Zurück zum Zitat Sarkhel, S., Bagga, N., Sarkar, S.K.: Compact 2D modeling and drain current performance analysis of a work function engineered double gate tunnel field effect transistor. J. Comput. Electron. 15, 104–114 (2016)CrossRef Sarkhel, S., Bagga, N., Sarkar, S.K.: Compact 2D modeling and drain current performance analysis of a work function engineered double gate tunnel field effect transistor. J. Comput. Electron. 15, 104–114 (2016)CrossRef
35.
Zurück zum Zitat Fukuda, K., Mori, T., Mizubayashi, W., Morita, Y., Tanabe, A., Masahara, M., Yasuda, T., Migita, S., Ota, H.: A compact model for tunnel field-effect transistors incorporating nonlocal band-to-band tunneling. J. Appl. Phys. 114, 144512 (2013)CrossRef Fukuda, K., Mori, T., Mizubayashi, W., Morita, Y., Tanabe, A., Masahara, M., Yasuda, T., Migita, S., Ota, H.: A compact model for tunnel field-effect transistors incorporating nonlocal band-to-band tunneling. J. Appl. Phys. 114, 144512 (2013)CrossRef
36.
Zurück zum Zitat Esaki, L.: New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109, 603–604 (1958)CrossRef Esaki, L.: New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109, 603–604 (1958)CrossRef
37.
Zurück zum Zitat De Michielis, L., Dağtekin, N., Biswas, A., Lattanzio, L., Selmi, L., Luisier, M., Riel, H., Ionescu, A.M.: An innovative band-to-band tunneling analytical model and implications in compact modeling of tunneling-based devices. Appl. Phys. Lett. 103, 123509 (2013)CrossRef De Michielis, L., Dağtekin, N., Biswas, A., Lattanzio, L., Selmi, L., Luisier, M., Riel, H., Ionescu, A.M.: An innovative band-to-band tunneling analytical model and implications in compact modeling of tunneling-based devices. Appl. Phys. Lett. 103, 123509 (2013)CrossRef
38.
Zurück zum Zitat De Michielis, L., Lattanzio, L., Ionescu, A.M.: Understanding the superlinear onset of tunnel-FET output characteristic. IEEE Electron Device Lett. 33, 1523–1525 (2012)CrossRef De Michielis, L., Lattanzio, L., Ionescu, A.M.: Understanding the superlinear onset of tunnel-FET output characteristic. IEEE Electron Device Lett. 33, 1523–1525 (2012)CrossRef
39.
Zurück zum Zitat De Michielis, L., Iellina, M., Palestri, P., Ionescu, A.M., Selmi, L.: Effect of the choice of the tunnelling path on semi-classical numerical simulations of TFET devices. Solid State Electron. 71, 7–12 (2012)CrossRef De Michielis, L., Iellina, M., Palestri, P., Ionescu, A.M., Selmi, L.: Effect of the choice of the tunnelling path on semi-classical numerical simulations of TFET devices. Solid State Electron. 71, 7–12 (2012)CrossRef
Metadaten
Titel
Fringing-field-based 2-D analytical model for a gate-underlap double-gate TFET
verfasst von
Dip Joti Paul
Md. Abdullah-Al-Kaiser
Md. Shofiqul Islam
Quazi D. M. Khosru
Publikationsdatum
22.08.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1234-5

Weitere Artikel der Ausgabe 4/2018

Journal of Computational Electronics 4/2018 Zur Ausgabe

Neuer Inhalt