Skip to main content

2024 | OriginalPaper | Buchkapitel

From Concept to Prototype: Developing and Testing GAAINet for Industrial IoT Intrusion Detection

verfasst von : Siphesihle Philezwini Sithungu, Elizabeth Marie Ehlers

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intrusion detection is a growing area of concern in Industrial Internet of Things (IIoT) systems. This is largely due to the fact that IIoT systems are typically used to augment the operation of Critical Information Infrastructures, the compromise of which could result in severe consequences for industries or even nations. In addition, IIoT is a relatively new technological development which introduces new vulnerabilities. Machine learning methods are increasingly being applied to IIoT intrusion detection. However, the data imbalance prevalent in IIoT intrusion detection datasets can limit the performance of intrusion detection algorithms due to the significantly smaller amount of attack samples. As such, generative models have been applied to address the data imbalance problem by modelling distributions of intrusion detection datasets in order to generate synthetic attack samples. Current work presents the implementation of a Generative Adversarial Artificial Immune Network (GAAINet) as an approach for addressing data imbalance IIoT intrusion detection. Experimental results show that GAAINet could generate synthetic attack samples for the WUSTL-IIoT-2021 dataset. The resulting balanced dataset was used to train an Artificial Immune Network classifier, which achieved a detection accuracy of 99.13% for binary classification and 98.87% for multi-class classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, Q., Zhu, X., Ni, Y., Gu, L., Zhu, H.: Blockchain for the iot and industrial iot: a review. Internet of Things 10, 100081 (2020) Wang, Q., Zhu, X., Ni, Y., Gu, L., Zhu, H.: Blockchain for the iot and industrial iot: a review. Internet of Things 10, 100081 (2020)
2.
Zurück zum Zitat Chaudhary, R., Aujla, G.S., Garg, S., Kumar, N., Rodrigues, J.J.P.C.: Sdn-enabled multi-attribute-based secure communication for smart grid in iiot environment. IEEE Trans. Industr. Inf. 14, 2629–2640 (2018)CrossRef Chaudhary, R., Aujla, G.S., Garg, S., Kumar, N., Rodrigues, J.J.P.C.: Sdn-enabled multi-attribute-based secure communication for smart grid in iiot environment. IEEE Trans. Industr. Inf. 14, 2629–2640 (2018)CrossRef
3.
Zurück zum Zitat Iqbal, A., Amir, M., Kumar, V., Alam, A., Umair, M.: Integration of next generation iiot with blockchain for the development of smart industries. Emerg. Sci. J 4, 1–17 (2020)CrossRef Iqbal, A., Amir, M., Kumar, V., Alam, A., Umair, M.: Integration of next generation iiot with blockchain for the development of smart industries. Emerg. Sci. J 4, 1–17 (2020)CrossRef
7.
Zurück zum Zitat Jaidka, H., Sharma, N., Singh, R.: Evolution of iot to iiot: applications challenges. In: Proceedings of the international conference on innovative computing communications (ICICC) (2020) Jaidka, H., Sharma, N., Singh, R.: Evolution of iot to iiot: applications challenges. In: Proceedings of the international conference on innovative computing communications (ICICC) (2020)
9.
Zurück zum Zitat Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2, 1–22 (2019)CrossRef Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2, 1–22 (2019)CrossRef
10.
Zurück zum Zitat Kumar, S., Spafford, E.H.: An application of pattern matching in intrusion detection (1994) Kumar, S., Spafford, E.H.: An application of pattern matching in intrusion detection (1994)
11.
Zurück zum Zitat Sundaram, A.: An introduction to intrusion detection. Crossroads 2, 3–7 (1996)CrossRef Sundaram, A.: An introduction to intrusion detection. Crossroads 2, 3–7 (1996)CrossRef
12.
Zurück zum Zitat Lunt, T.F., Jagannathan, R., Lee, R., Whitehurst, A., Listgarten, S.: Knowledge based intrusion detection. In: Proceedings of the Annual AI Systems in Government Conference, Washington, DC (1989) Lunt, T.F., Jagannathan, R., Lee, R., Whitehurst, A., Listgarten, S.: Knowledge based intrusion detection. In: Proceedings of the Annual AI Systems in Government Conference, Washington, DC (1989)
13.
Zurück zum Zitat Kruegel, C., Toth, T.: Using decision trees to improve signature-based intrusion detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) Recent Advances in Intrusion Detection, pp. 173–191. Recent Advances in Intrusion Detection, Springer Berlin Heidelberg (2003) Kruegel, C., Toth, T.: Using decision trees to improve signature-based intrusion detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) Recent Advances in Intrusion Detection, pp. 173–191. Recent Advances in Intrusion Detection, Springer Berlin Heidelberg (2003)
14.
Zurück zum Zitat Alsoufi, M.A., et al.: Anomaly-based intrusion detection systems in iot using deep learning: A systematic literature review. Appli. Sci. 11 (2021) Alsoufi, M.A., et al.: Anomaly-based intrusion detection systems in iot using deep learning: A systematic literature review. Appli. Sci. 11 (2021)
15.
Zurück zum Zitat Wyschogrod, D., Dezso, J.: False alarm reduction in automatic signature generation for zero-day attacks. In: 2nd Cyberspace Research Workshop, pp. 73 (2009) Wyschogrod, D., Dezso, J.: False alarm reduction in automatic signature generation for zero-day attacks. In: 2nd Cyberspace Research Workshop, pp. 73 (2009)
16.
Zurück zum Zitat Mukherjee, S., Gupta, S., Rawlley, O., Jain, S.: Leveraging big data analytics in 5g- enabled iot and industrial iot for the development of sustainable smart cities. Trans. Emerging Telecommun. Technol. 33, e4618 (2022) Mukherjee, S., Gupta, S., Rawlley, O., Jain, S.: Leveraging big data analytics in 5g- enabled iot and industrial iot for the development of sustainable smart cities. Trans. Emerging Telecommun. Technol. 33, e4618 (2022)
17.
Zurück zum Zitat Yazdinejad, A., Kazemi, M., Parizi, R.M., Dehghantanha, A., Karimipour, H.: An ensemble deep learning model for cyber threat hunting in industrial internet of things. Digital Commun. Netw. 9, 101–110 (2023)CrossRef Yazdinejad, A., Kazemi, M., Parizi, R.M., Dehghantanha, A., Karimipour, H.: An ensemble deep learning model for cyber threat hunting in industrial internet of things. Digital Commun. Netw. 9, 101–110 (2023)CrossRef
18.
Zurück zum Zitat Guezzaz, A., Azrour, M., Benkirane, S., Mohy-Eddine, M., Attou, H., Douiba, M.: A lightweight hybrid intrusion detection framework using machine learning for edge-based iiot security. Int. Arab. J. Inf. Technol. 19 (2022) Guezzaz, A., Azrour, M., Benkirane, S., Mohy-Eddine, M., Attou, H., Douiba, M.: A lightweight hybrid intrusion detection framework using machine learning for edge-based iiot security. Int. Arab. J. Inf. Technol. 19 (2022)
19.
Zurück zum Zitat Kasongo, S.M.: An advanced intrusion detection system for iiot based on ga and tree based algorithms. IEEE Access 9, 113199–113212 (2021)CrossRef Kasongo, S.M.: An advanced intrusion detection system for iiot based on ga and tree based algorithms. IEEE Access 9, 113199–113212 (2021)CrossRef
20.
Zurück zum Zitat Vaiyapuri, T., Sbai, Z., Alaskar, H., Alaseem, N.A.: Deep learning approaches for intrusion detection in iiot networks–opportunities and future directions. Inter. J. Adv. Comput. Sci. Appli. 12 (2021) Vaiyapuri, T., Sbai, Z., Alaskar, H., Alaseem, N.A.: Deep learning approaches for intrusion detection in iiot networks–opportunities and future directions. Inter. J. Adv. Comput. Sci. Appli. 12 (2021)
21.
Zurück zum Zitat Yao, H., Gao, P., Zhang, P., Wang, J., Jiang, C., Lu, L.: Hybrid intrusion detection system for edge-based iiot relying on machine-learning-aided detection. IEEE Network 33, 75–81 (2019)CrossRef Yao, H., Gao, P., Zhang, P., Wang, J., Jiang, C., Lu, L.: Hybrid intrusion detection system for edge-based iiot relying on machine-learning-aided detection. IEEE Network 33, 75–81 (2019)CrossRef
22.
Zurück zum Zitat Zhou, L., Guo, H.: Anomaly detection methods for iiot networks. In: 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 214–219 (2018) Zhou, L., Guo, H.: Anomaly detection methods for iiot networks. In: 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 214–219 (2018)
23.
Zurück zum Zitat Yuan, L., Yu, S., Yang, Z., Duan, M., Li, K.: A data balancing approach based on generative adversarial network. Futur. Gener. Comput. Syst. 141, 768–776 (2023)CrossRef Yuan, L., Yu, S., Yang, Z., Duan, M., Li, K.: A data balancing approach based on generative adversarial network. Futur. Gener. Comput. Syst. 141, 768–776 (2023)CrossRef
25.
Zurück zum Zitat Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020) Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020) 
26.
Zurück zum Zitat Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:2107.12521 (2021) Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:​2107.​12521 (2021)
27.
Zurück zum Zitat Blunsom, P.: Hidden markov models. Lecture notes, August 15, 48 (2004) Blunsom, P.: Hidden markov models. Lecture notes, August 15, 48 (2004)
28.
Zurück zum Zitat Cao, Y., et al.: A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt (Mar 2023) Cao, Y., et al.: A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt (Mar 2023)
29.
Zurück zum Zitat Sithungu, S.P., Ehlers, E.M.: Gaainet: A generative adversarial artificial immune network model for intrusion detection in industrial iot systems. J. Adv. Inform. Technol. 13 (2022) Sithungu, S.P., Ehlers, E.M.: Gaainet: A generative adversarial artificial immune network model for intrusion detection in industrial iot systems. J. Adv. Inform. Technol. 13 (2022)
30.
Zurück zum Zitat Aldhaheri, S., Alghazzawi, D., Cheng, L., Alzahrani, B., Al-Barakati, A.: Deepdca: novel network-based detection of iot attacks using artificial immune system. Appl. Sci. 10, 1909 (2020)CrossRef Aldhaheri, S., Alghazzawi, D., Cheng, L., Alzahrani, B., Al-Barakati, A.: Deepdca: novel network-based detection of iot attacks using artificial immune system. Appl. Sci. 10, 1909 (2020)CrossRef
31.
Zurück zum Zitat Brown, J., Anwar, M.: Blacksite: human-in-the-loop artificial immune system for intrusion detection in internet of things. Hum.-Intell. Syst. Integrat. 3, 55–67 (2021)CrossRef Brown, J., Anwar, M.: Blacksite: human-in-the-loop artificial immune system for intrusion detection in internet of things. Hum.-Intell. Syst. Integrat. 3, 55–67 (2021)CrossRef
32.
Zurück zum Zitat Le, T.T.H., Oktian, Y.E., Kim, H.: Xgboost for imbalanced multi- class classification-based industrial internet of things intrusion detection systems. Sustainability 14 (2022) Le, T.T.H., Oktian, Y.E., Kim, H.: Xgboost for imbalanced multi- class classification-based industrial internet of things intrusion detection systems. Sustainability 14 (2022)
33.
Zurück zum Zitat Telikani, A., Shen, J., Yang, J., Wang, P.: Industrial iot intrusion detection via evolutionary cost-sensitive learning and fog computing. IEEE Internet Things J. 9, 23260–23271 (2022)CrossRef Telikani, A., Shen, J., Yang, J., Wang, P.: Industrial iot intrusion detection via evolutionary cost-sensitive learning and fog computing. IEEE Internet Things J. 9, 23260–23271 (2022)CrossRef
34.
Zurück zum Zitat Liang, W., Hu, Y., Zhou, X., Pan, Y., Wang, K.I.K.: Variational few-shot learning for microservice-oriented intrusion detection in distributed industrial iot. IEEE Trans. Industr. Inf. 18, 5087–5095 (2022)CrossRef Liang, W., Hu, Y., Zhou, X., Pan, Y., Wang, K.I.K.: Variational few-shot learning for microservice-oriented intrusion detection in distributed industrial iot. IEEE Trans. Industr. Inf. 18, 5087–5095 (2022)CrossRef
35.
Zurück zum Zitat Benaddi, H., Jouhari, M., Ibrahimi, K., Othman, J.B., Amhoud, E.M.: Anomaly detection in industrial iot using distributional reinforcement learning and generative adversarial networks. Sensors 22 (2022) Benaddi, H., Jouhari, M., Ibrahimi, K., Othman, J.B., Amhoud, E.M.: Anomaly detection in industrial iot using distributional reinforcement learning and generative adversarial networks. Sensors 22 (2022)
36.
Zurück zum Zitat Zhou, X., Hu, Y., Wu, J., Liang, W., Ma, J., Jin, Q.: Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial iot. IEEE Trans. Industr. Inf. 19, 570–580 (2023)CrossRef Zhou, X., Hu, Y., Wu, J., Liang, W., Ma, J., Jin, Q.: Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial iot. IEEE Trans. Industr. Inf. 19, 570–580 (2023)CrossRef
37.
Zurück zum Zitat de Araujo-Filho, P.F., Kaddoum, G., Campelo, D.R., Santos, A.G., Macedo, D., Zanchettin, C.: Intrusion detection for cyber–physical systems using generative adversarial networks in fog environment. IEEE Internet Things J. 8, 6247–6256 (2021)CrossRef de Araujo-Filho, P.F., Kaddoum, G., Campelo, D.R., Santos, A.G., Macedo, D., Zanchettin, C.: Intrusion detection for cyber–physical systems using generative adversarial networks in fog environment. IEEE Internet Things J. 8, 6247–6256 (2021)CrossRef
38.
Zurück zum Zitat Zolanvari, M., Gupta, L., Khan, K.M., Jain, R.: Wustl-iiot-2o2l dataset for iiot cybersecurity research. Washington University in St. Louis, USA (2021) Zolanvari, M., Gupta, L., Khan, K.M., Jain, R.: Wustl-iiot-2o2l dataset for iiot cybersecurity research. Washington University in St. Louis, USA (2021)
Metadaten
Titel
From Concept to Prototype: Developing and Testing GAAINet for Industrial IoT Intrusion Detection
verfasst von
Siphesihle Philezwini Sithungu
Elizabeth Marie Ehlers
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_33