Skip to main content
Erschienen in: Journal of Materials Science 19/2020

02.04.2020 | Metals & corrosion

From liquid metal dealloying to liquid metal expulsion

verfasst von: Jun-Chao Shao, Hai-Jun Jin

Erschienen in: Journal of Materials Science | Ausgabe 19/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In liquid metal dealloying, it is assumed that the corrosion product (dealloyed porous solids) is wetted by the liquid metal; otherwise, the dealloying may be halted due to liquid metal expulsion. Here, we report the first observation of liquid metal expulsion in liquid metal dealloying—liquid Ga rushes out of porous C when the dealloying of Mn–C alloy in liquid Ga is complete. On the contrary, similar to all previous reports, liquid Ga is trapped in porous Pb when In–Pb is dealloyed in liquid Ga. It suggests that liquid metal dealloying can proceed although the corrosion product is repelled by the liquid metal. Our study also reveals that the wettability and solid/liquid interface significantly influence the morphology of dealloyed porous structure, which has been largely unexplored in dealloying.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410(6827):450–453CrossRef Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410(6827):450–453CrossRef
2.
Zurück zum Zitat Weissmueller J, Newman RC, Jin H-J, Hodge AM, Kysar JW (2009) Nanoporous metals by alloy corrosion: formation and mechanical properties. MRS Bull 34(8):577–586CrossRef Weissmueller J, Newman RC, Jin H-J, Hodge AM, Kysar JW (2009) Nanoporous metals by alloy corrosion: formation and mechanical properties. MRS Bull 34(8):577–586CrossRef
3.
Zurück zum Zitat Newman RC, Corcoran SG, Erlebacher J, Aziz MJ, Sieradzki K (1999) Alloy corrosion. MRS Bull 24(7):24–28CrossRef Newman RC, Corcoran SG, Erlebacher J, Aziz MJ, Sieradzki K (1999) Alloy corrosion. MRS Bull 24(7):24–28CrossRef
4.
Zurück zum Zitat Detsi E, Onck PR, De Hosson JTM (2013) Electrochromic artificial muscles based on nanoporous metal–polymer composites. Appl Phys Lett 103(19):193101CrossRef Detsi E, Onck PR, De Hosson JTM (2013) Electrochromic artificial muscles based on nanoporous metal–polymer composites. Appl Phys Lett 103(19):193101CrossRef
5.
Zurück zum Zitat Ye XL, Jin HJ (2013) Electrochemical control of creep in nanoporous gold. Appl Phys Lett 103(20):201912CrossRef Ye XL, Jin HJ (2013) Electrochemical control of creep in nanoporous gold. Appl Phys Lett 103(20):201912CrossRef
6.
Zurück zum Zitat Zhang SM, Jin HJ (2014) Multilayer-structured gold/nanoporous gold composite for high performance linear actuation. Appl Phys Lett 104(10):101905CrossRef Zhang SM, Jin HJ (2014) Multilayer-structured gold/nanoporous gold composite for high performance linear actuation. Appl Phys Lett 104(10):101905CrossRef
7.
Zurück zum Zitat Weissmuller J, Sieradzki K (2018) Dealloyed nanoporous materials with interface-controlled behavior. MRS Bull 43(1):14–19CrossRef Weissmuller J, Sieradzki K (2018) Dealloyed nanoporous materials with interface-controlled behavior. MRS Bull 43(1):14–19CrossRef
8.
Zurück zum Zitat Lilleodden ET, Voorhees PW (2018) On the topological, morphological, and microstructural characterization of nanoporous metals. MRS Bull 43(1):20–26CrossRef Lilleodden ET, Voorhees PW (2018) On the topological, morphological, and microstructural characterization of nanoporous metals. MRS Bull 43(1):20–26CrossRef
9.
Zurück zum Zitat Jin HJ, Weissmuller J, Farkas D (2018) Mechanical response of nanoporous metals: a story of size, surface stress, and severed struts. MRS Bull 43(1):35–42CrossRef Jin HJ, Weissmuller J, Farkas D (2018) Mechanical response of nanoporous metals: a story of size, surface stress, and severed struts. MRS Bull 43(1):35–42CrossRef
10.
Zurück zum Zitat Chen Q, Ding Y, Chen MW (2018) Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull 43(1):43–48CrossRef Chen Q, Ding Y, Chen MW (2018) Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull 43(1):43–48CrossRef
11.
Zurück zum Zitat Wada T, Yubuta K, Inoue A, Kato H (2011) Dealloying by metallic melt. Mater Lett 65(7):1076–1078CrossRef Wada T, Yubuta K, Inoue A, Kato H (2011) Dealloying by metallic melt. Mater Lett 65(7):1076–1078CrossRef
12.
Zurück zum Zitat Wang CC, Chen Q (2018) Reduction-induced decomposition: spontaneous formation of monolithic nanoporous metals of tunable structural hierarchy and porosity. Chem Mater 30(11):3894–3900CrossRef Wang CC, Chen Q (2018) Reduction-induced decomposition: spontaneous formation of monolithic nanoporous metals of tunable structural hierarchy and porosity. Chem Mater 30(11):3894–3900CrossRef
13.
Zurück zum Zitat Lu Z, Li C, Han JH, Zhang F, Liu P, Wang H, Wang ZL, Cheng C, Chen LH, Hirata A, Fujita T, Erlebacher J, Chen MW (2018) Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nat Commun 9:276CrossRef Lu Z, Li C, Han JH, Zhang F, Liu P, Wang H, Wang ZL, Cheng C, Chen LH, Hirata A, Fujita T, Erlebacher J, Chen MW (2018) Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nat Commun 9:276CrossRef
14.
Zurück zum Zitat Hu WK, Shao JC, Wang SG, Jin HJ (2019) Evolution of a bicontinuous structure in peritectic melting: the simplest form of dealloying. Phys Rev Mater 3(11):022401 Hu WK, Shao JC, Wang SG, Jin HJ (2019) Evolution of a bicontinuous structure in peritectic melting: the simplest form of dealloying. Phys Rev Mater 3(11):022401
15.
Zurück zum Zitat Geslin P-A, McCue I, Gaskey B, Erlebacher J, Karma A (2015) Topology-generating interfacial pattern formation during liquid metal dealloying. Nat Commun 6:8887CrossRef Geslin P-A, McCue I, Gaskey B, Erlebacher J, Karma A (2015) Topology-generating interfacial pattern formation during liquid metal dealloying. Nat Commun 6:8887CrossRef
16.
Zurück zum Zitat McCue I, Karma A, Erlebacher J (2018) Pattern formation during electrochemical and liquid metal dealloying. MRS Bull 43(1):27–34CrossRef McCue I, Karma A, Erlebacher J (2018) Pattern formation during electrochemical and liquid metal dealloying. MRS Bull 43(1):27–34CrossRef
17.
Zurück zum Zitat Okulov IV, Okulov AV, Volegov AS, Markmann J (2018) Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters. Scr Mater 154:68–72CrossRef Okulov IV, Okulov AV, Volegov AS, Markmann J (2018) Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters. Scr Mater 154:68–72CrossRef
18.
Zurück zum Zitat Wada T, Setyawan AD, Yubuta K, Kato H (2011) Nano- to submicro-porous beta-Ti alloy prepared from dealloying in a metallic melt. Scr Mater 65(6):532–535CrossRef Wada T, Setyawan AD, Yubuta K, Kato H (2011) Nano- to submicro-porous beta-Ti alloy prepared from dealloying in a metallic melt. Scr Mater 65(6):532–535CrossRef
19.
Zurück zum Zitat Wada T, Kato H (2013) Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scr Mater 68(9):723–726CrossRef Wada T, Kato H (2013) Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scr Mater 68(9):723–726CrossRef
20.
Zurück zum Zitat Chen-Wiegart YCK, Wada T, Butakov N, Xiao XH, De Carlo F, Kato H, Wang J, Dunand DC, Maire E (2013) 3D morphological evolution of porous titanium by X-ray micro- and nano-tomography. J Mater Res 28(17):2444–2452CrossRef Chen-Wiegart YCK, Wada T, Butakov N, Xiao XH, De Carlo F, Kato H, Wang J, Dunand DC, Maire E (2013) 3D morphological evolution of porous titanium by X-ray micro- and nano-tomography. J Mater Res 28(17):2444–2452CrossRef
21.
Zurück zum Zitat Kim JW, Tsuda M, Wada T, Yubuta K, Kim SG, Kato H (2015) Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors. Acta Mater 84:497–505CrossRef Kim JW, Tsuda M, Wada T, Yubuta K, Kim SG, Kato H (2015) Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors. Acta Mater 84:497–505CrossRef
22.
Zurück zum Zitat Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H (2014) Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett 14(8):4505–4510CrossRef Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H (2014) Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett 14(8):4505–4510CrossRef
23.
Zurück zum Zitat Yu S-G, Yubuta K, Wada T, Kato H (2016) Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid. Carbon 96:403–410CrossRef Yu S-G, Yubuta K, Wada T, Kato H (2016) Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid. Carbon 96:403–410CrossRef
24.
Zurück zum Zitat McCue I, Ryan S, Hemke K, Xu XD, Li N, Chen MW, Erlebacher J (2016) Size effects in the mechanical properties of bulk bicontinuous Ta/Cu nanocomposites made by liquid metal dealloying. Adv Eng Mater 18:46–50CrossRef McCue I, Ryan S, Hemke K, Xu XD, Li N, Chen MW, Erlebacher J (2016) Size effects in the mechanical properties of bulk bicontinuous Ta/Cu nanocomposites made by liquid metal dealloying. Adv Eng Mater 18:46–50CrossRef
25.
Zurück zum Zitat McCue I, Gaskey B, Geslin P-A, Karma A, Erlebacher J (2016) Kinetics and morphological evolution of liquid metal dealloying. Acta Mater 115:10–23CrossRef McCue I, Gaskey B, Geslin P-A, Karma A, Erlebacher J (2016) Kinetics and morphological evolution of liquid metal dealloying. Acta Mater 115:10–23CrossRef
26.
Zurück zum Zitat Gaskey B, McCue I, Chuang A, Erlebacher J (2019) Self-assembled porous metal-intermetallic nanocomposites via liquid metal dealloying. Acta Mater 164:293–300CrossRef Gaskey B, McCue I, Chuang A, Erlebacher J (2019) Self-assembled porous metal-intermetallic nanocomposites via liquid metal dealloying. Acta Mater 164:293–300CrossRef
27.
Zurück zum Zitat McCue I, Gaskey B, Crawford B, Erlebacher J (2016) Local heterogeneity in the mechanical properties of bicontinuous composites made by liquid metal dealloying. Appl Phys Lett 109(23):231901CrossRef McCue I, Gaskey B, Crawford B, Erlebacher J (2016) Local heterogeneity in the mechanical properties of bicontinuous composites made by liquid metal dealloying. Appl Phys Lett 109(23):231901CrossRef
28.
Zurück zum Zitat Kim JW, Wada T, Kim SG, Kato H (2016) Enlarging the surface area of an electrolytic capacitor of porous niobium by MgCe eutectic liquid dealloying. Scr Mater 122:68–71CrossRef Kim JW, Wada T, Kim SG, Kato H (2016) Enlarging the surface area of an electrolytic capacitor of porous niobium by MgCe eutectic liquid dealloying. Scr Mater 122:68–71CrossRef
29.
Zurück zum Zitat Naidich JV, Chuvashov JN (1983) Wettability and contact interaction of gallium-containing melts with non-metallic solids. J Mater Sci 18(7):2071–2080CrossRef Naidich JV, Chuvashov JN (1983) Wettability and contact interaction of gallium-containing melts with non-metallic solids. J Mater Sci 18(7):2071–2080CrossRef
30.
Zurück zum Zitat Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12):2817–2829CrossRef Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12):2817–2829CrossRef
31.
Zurück zum Zitat Ueki R, Nishijima T, Hikata T, Ookubo S, Utsunomiya R, Matsuba T, Fujita J (2012) In-situ observation of surface graphitization of gallium droplet and concentration of carbon in liquid gallium. Jpn J Appl Phys 51(6):06FD28CrossRef Ueki R, Nishijima T, Hikata T, Ookubo S, Utsunomiya R, Matsuba T, Fujita J (2012) In-situ observation of surface graphitization of gallium droplet and concentration of carbon in liquid gallium. Jpn J Appl Phys 51(6):06FD28CrossRef
32.
Zurück zum Zitat Okamoto H (2010) Desk handbook: phase diagrams for binary alloys, 2nd edn. ASM International, Materials Park Okamoto H (2010) Desk handbook: phase diagrams for binary alloys, 2nd edn. ASM International, Materials Park
33.
Zurück zum Zitat Chentsov VP, Shevchenko VG, Mozgovoi AG, Pokrasin MA (2011) Density and surface tension of heavy liquid-metal coolants: gallium and indium. Inorg Mater Appl Res 2(5):468–473CrossRef Chentsov VP, Shevchenko VG, Mozgovoi AG, Pokrasin MA (2011) Density and surface tension of heavy liquid-metal coolants: gallium and indium. Inorg Mater Appl Res 2(5):468–473CrossRef
34.
Zurück zum Zitat Greenidge G, Erlebacher J (2019) Synthesis of porous graphite by dealloying of silicon carbide. In: ISNM 2019 conference Greenidge G, Erlebacher J (2019) Synthesis of porous graphite by dealloying of silicon carbide. In: ISNM 2019 conference
35.
Zurück zum Zitat Snyder J, Erlebacher J (2010) Kinetics of crystal etching limited by terrace dissolution. J Electrochem Soc 157(3):C125–C130CrossRef Snyder J, Erlebacher J (2010) Kinetics of crystal etching limited by terrace dissolution. J Electrochem Soc 157(3):C125–C130CrossRef
36.
Zurück zum Zitat Ye XL, Lu N, Li XJ, Du K, Tan J, Jin HJ (2014) Primary and secondary dealloying of Au(Pt)–Ag: structural and compositional evolutions, and volume shrinkage. J Electrochem Soc 161(12):C517–C526CrossRef Ye XL, Lu N, Li XJ, Du K, Tan J, Jin HJ (2014) Primary and secondary dealloying of Au(Pt)–Ag: structural and compositional evolutions, and volume shrinkage. J Electrochem Soc 161(12):C517–C526CrossRef
37.
Zurück zum Zitat Chatain D, Wynblatt P (1996) Experimental evidence for a wetting transition in liquid Ga–Pb alloys. Surf Sci 345(1–2):85–90CrossRef Chatain D, Wynblatt P (1996) Experimental evidence for a wetting transition in liquid Ga–Pb alloys. Surf Sci 345(1–2):85–90CrossRef
38.
Zurück zum Zitat Van Petegem S, Brandstetter S, Maass R, Hodge AM, El-Dasher BS, Biener J, Schmitt B, Borca C, Van Swygenhoven H (2009) On the microstructure of nanoporous gold: an X-ray diffraction study. Nano Lett 9(3):1158–1163CrossRef Van Petegem S, Brandstetter S, Maass R, Hodge AM, El-Dasher BS, Biener J, Schmitt B, Borca C, Van Swygenhoven H (2009) On the microstructure of nanoporous gold: an X-ray diffraction study. Nano Lett 9(3):1158–1163CrossRef
39.
Zurück zum Zitat Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134(20):8633–8645CrossRef Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134(20):8633–8645CrossRef
40.
Zurück zum Zitat Hayes JR, Hodge AM, Biener J, Hamza AV, Sieradzki K (2006) Monolithic nanoporous copper by dealloying Mn–Cu. J Mater Res 21(10):2611–2616CrossRef Hayes JR, Hodge AM, Biener J, Hamza AV, Sieradzki K (2006) Monolithic nanoporous copper by dealloying Mn–Cu. J Mater Res 21(10):2611–2616CrossRef
41.
Zurück zum Zitat Hakamada M, Mabuchi M (2009) Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J Alloys Compd 479(1–2):326–329CrossRef Hakamada M, Mabuchi M (2009) Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J Alloys Compd 479(1–2):326–329CrossRef
42.
Zurück zum Zitat Xu CX, Li YY, Tian F, Ding Y (2010) Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. ChemPhysChem 11(15):3320–3328CrossRef Xu CX, Li YY, Tian F, Ding Y (2010) Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. ChemPhysChem 11(15):3320–3328CrossRef
43.
Zurück zum Zitat Chen Q, Sieradzki K (2013) Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat Mater 12(12):1102–1106CrossRef Chen Q, Sieradzki K (2013) Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat Mater 12(12):1102–1106CrossRef
44.
Zurück zum Zitat Wang L, Balk TJ (2014) Synthesis of nanoporous nickel thin films from various precursors. Philos Mag Lett 94(9):573–581CrossRef Wang L, Balk TJ (2014) Synthesis of nanoporous nickel thin films from various precursors. Philos Mag Lett 94(9):573–581CrossRef
45.
Zurück zum Zitat Liu F, Jin HJ (2018) Extrinsic parting limit for dealloying of Cu–Rh. J Electrochem Soc 165(16):C999–C1006CrossRef Liu F, Jin HJ (2018) Extrinsic parting limit for dealloying of Cu–Rh. J Electrochem Soc 165(16):C999–C1006CrossRef
46.
Zurück zum Zitat Hakamada M, Motomura J, Hirashima F, Mabuchi M (2012) Preparation of nanoporous ruthenium catalyst and its CO oxidation characteristics. Mater Trans 53(3):524–530CrossRef Hakamada M, Motomura J, Hirashima F, Mabuchi M (2012) Preparation of nanoporous ruthenium catalyst and its CO oxidation characteristics. Mater Trans 53(3):524–530CrossRef
47.
Zurück zum Zitat Wang L, Balk TJ (2014) Using multilayer precursors to create nanoporous gold and nanoporous iridium thin films with layered architecture. Metall Mater Trans A Phys Metall Mater Sci 45A(3):1096–1100CrossRef Wang L, Balk TJ (2014) Using multilayer precursors to create nanoporous gold and nanoporous iridium thin films with layered architecture. Metall Mater Trans A Phys Metall Mater Sci 45A(3):1096–1100CrossRef
48.
Zurück zum Zitat Yang W, Zheng XG, Wang SG, Jin HJ (2018) Nanoporous aluminum by galvanic replacement: dealloying and inward-growth plating. J Electrochem Soc 165(9):C492–C496CrossRef Yang W, Zheng XG, Wang SG, Jin HJ (2018) Nanoporous aluminum by galvanic replacement: dealloying and inward-growth plating. J Electrochem Soc 165(9):C492–C496CrossRef
49.
50.
Zurück zum Zitat Okulov AV, Volegov AS, Weissmüller J, Markmann J, Okulov IV (2018) Dealloying-based metal–polymer composites for biomedical applications. Scr Mater 146:290–294CrossRef Okulov AV, Volegov AS, Weissmüller J, Markmann J, Okulov IV (2018) Dealloying-based metal–polymer composites for biomedical applications. Scr Mater 146:290–294CrossRef
51.
Zurück zum Zitat Okulov IV, Okulov AV, Soldatov IV, Luthringer B, Willumeit-Römer R, Wada T, Kato H, Weissmüller J, Markmann J (2018) Open porous dealloying-based biomaterials as a novel biomaterial platform. Mater Sci Eng C 88:95–103CrossRef Okulov IV, Okulov AV, Soldatov IV, Luthringer B, Willumeit-Römer R, Wada T, Kato H, Weissmüller J, Markmann J (2018) Open porous dealloying-based biomaterials as a novel biomaterial platform. Mater Sci Eng C 88:95–103CrossRef
52.
Zurück zum Zitat Joo SH, Bae JW, Park WY, Shimada Y, Wada T, Kim HS, Takeuchi A, Konno TJ, Kato H, Okulov IV (2020) Beating thermal coarsening in nanoporous materials via high-entropy design. Adv Mater 32:1906160CrossRef Joo SH, Bae JW, Park WY, Shimada Y, Wada T, Kim HS, Takeuchi A, Konno TJ, Kato H, Okulov IV (2020) Beating thermal coarsening in nanoporous materials via high-entropy design. Adv Mater 32:1906160CrossRef
53.
Zurück zum Zitat Boreyko JB, Baker CH, Poley CR, Chen CH (2011) Wetting and dewetting transitions on hierarchical superhydrophobic surfaces. Langmuir 27(12):7502–7509CrossRef Boreyko JB, Baker CH, Poley CR, Chen CH (2011) Wetting and dewetting transitions on hierarchical superhydrophobic surfaces. Langmuir 27(12):7502–7509CrossRef
Metadaten
Titel
From liquid metal dealloying to liquid metal expulsion
verfasst von
Jun-Chao Shao
Hai-Jun Jin
Publikationsdatum
02.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04599-2

Weitere Artikel der Ausgabe 19/2020

Journal of Materials Science 19/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.