Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.02.2013 | Doctoral and Postdoctoral Dissertations | Ausgabe 1/2013

KI - Künstliche Intelligenz 1/2013

From Texts to Networks: Detecting and Managing the Impact of Methodological Choices for Extracting Network Data from Text Data

Zeitschrift:
KI - Künstliche Intelligenz > Ausgabe 1/2013
Autor:
Jana Diesner

Abstract

This thesis (Diesner in Technical Report CMU-ISR-12-101, 2012) addresses a series of methodological problems related to extracting information on socio-technical networks from natural language text data. Theories and models from the social sciences are leveraged and combined with computational approaches to (a) construct, analyze and compare network data and (b) combine text data and network data for analysis. This thesis entails various projects that serve three purposes: First, the impact of various common coding choices, including reference resolution and co-occurrence-based link formation, on network data and analysis results is empirically identified across multiple types of text data and domains. Second, different relation extraction methods are compared across various over-time, open-source, large-scale datasets with respect to the resulting network data and analysis results. This study offers a complement to traditional strategies for accuracy assessment. The relation extraction methods considered include network data construction based on (a) manually versus automatically built thesauri, (b) meta-data, and (c) collaboration with subject matter experts. Third, the concepts of grouping and roles from network analysis are integrated with text mining methods to enable the theoretically grounded, joint consideration of text data and network data for real-world applications.
Overall, in this thesis, an interdisciplinary and computationally rigorous approach is used; thereby advancing the intersection of network analysis, natural language processing and computing. The contributions made with this work help people to utilize text data for network analysis, and to collect, manage and interpret rich network data at any scale. These steps are preconditions for asking substantive and graph-theoretic questions, testing hypotheses, and advancing theories about networks.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

KI - Künstliche Intelligenz

The Scientific journal "KI – Künstliche Intelligenz" is the official journal of the division for artificial intelligence within the "Gesellschaft für Informatik e.V." (GI) – the German Informatics Society - with constributions from troughout the field of artificial intelligence.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2013

KI - Künstliche Intelligenz 1/2013 Zur Ausgabe

Editorial

Editorial

Premium Partner

    Bildnachweise