Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2018

08.03.2018 | SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED REVIEW PAPER

Frontiers of Theoretical Research on Shape Memory Alloys: A General Overview

verfasst von: Piyas Chowdhury

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this concise review, general aspects of modeling shape memory alloys (SMAs) are recounted. Different approaches are discussed under four general categories, namely, (a) macro-phenomenological, (b) micromechanical, (c) molecular dynamics, and (d) first principles models. Macro-phenomenological theories, stemming from empirical formulations depicting continuum elastic, plastic, and phase transformation, are primarily of engineering interest, whereby the performance of SMA-made components is investigated. Micromechanical endeavors are generally geared towards understanding microstructural phenomena within continuum mechanics such as the accommodation of straining due to phase change as well as role of precipitates. By contrast, molecular dynamics, being a more recently emerging computational technique, concerns attributes of discrete lattice structures, and thus captures SMA deformation mechanism by means of empirically reconstructing interatomic bonding forces. Finally, ab initio theories utilize quantum mechanical framework to peek into atomistic foundation of deformation, and can pave the way for studying the role of solid-sate effects. With specific examples, this paper provides concise descriptions of each category along with their relative merits and emphases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
2.
Zurück zum Zitat Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng, A 273:149–160CrossRef Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng, A 273:149–160CrossRef
3.
Zurück zum Zitat Chowdhury P, Canadinc D, Sehitoglu H (2017) On deformation behavior of Fe-Mn based structural alloys. Mater Sci Eng 122:1–28CrossRef Chowdhury P, Canadinc D, Sehitoglu H (2017) On deformation behavior of Fe-Mn based structural alloys. Mater Sci Eng 122:1–28CrossRef
4.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2007) Characterization and 3-D modeling of Ni60Ti SMA for actuation of a variable geometry jet engine chevron. In: The 14th International symposium on: smart structures and materials & nondestructive evaluation and health monitoring. In: International society for optics and photonics, pp 65293Z-65293Z-65212 Hartl DJ, Lagoudas DC (2007) Characterization and 3-D modeling of Ni60Ti SMA for actuation of a variable geometry jet engine chevron. In: The 14th International symposium on: smart structures and materials & nondestructive evaluation and health monitoring. In: International society for optics and photonics, pp 65293Z-65293Z-65212
5.
Zurück zum Zitat Oehler S, Hartl D, Lopez R, Malak R, Lagoudas D (2012) Design optimization and uncertainty analysis of SMA morphing structures. Smart Mater Struct 21(9):094016CrossRef Oehler S, Hartl D, Lopez R, Malak R, Lagoudas D (2012) Design optimization and uncertainty analysis of SMA morphing structures. Smart Mater Struct 21(9):094016CrossRef
6.
Zurück zum Zitat Huang M, Brinson L (1998) A multivariant model for single crystal shape memory alloy behavior. J Mech Phys Solids 46(8):1379–1409CrossRef Huang M, Brinson L (1998) A multivariant model for single crystal shape memory alloy behavior. J Mech Phys Solids 46(8):1379–1409CrossRef
7.
Zurück zum Zitat Mura T (2013) Micromechanics of defects in solids. Springer, New York, p 2013 Mura T (2013) Micromechanics of defects in solids. Springer, New York, p 2013
8.
Zurück zum Zitat Paranjape HM, Manchiraju S, Anderson PM (2016) A phase field–Finite element approach to model the interaction between phase transformations and plasticity in shape memory alloys. Int J Plast 80:1–18CrossRef Paranjape HM, Manchiraju S, Anderson PM (2016) A phase field–Finite element approach to model the interaction between phase transformations and plasticity in shape memory alloys. Int J Plast 80:1–18CrossRef
9.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2017) A revisit to atomistic rationale for slip in shape memory alloys. Prog Mater Sci 85:1–42CrossRef Chowdhury P, Sehitoglu H (2017) A revisit to atomistic rationale for slip in shape memory alloys. Prog Mater Sci 85:1–42CrossRef
10.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys–fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys–fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef
11.
Zurück zum Zitat Saleeb A, Dhakal B, Hosseini M, Padula S II (2013) Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles. Smart Mater Struct 22(9):094006CrossRef Saleeb A, Dhakal B, Hosseini M, Padula S II (2013) Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles. Smart Mater Struct 22(9):094006CrossRef
12.
Zurück zum Zitat Lubliner J, Auricchio F (1996) Generalized plasticity and shape-memory alloys. Int J Solids Struct 33(7):991–1003CrossRef Lubliner J, Auricchio F (1996) Generalized plasticity and shape-memory alloys. Int J Solids Struct 33(7):991–1003CrossRef
13.
Zurück zum Zitat Patoor E, Eberhardt A, Berveiller M (1996) Micromechanical modelling of superelasticity in shape memory alloys. Le J de Physique IV 6(C1):C1-277 Patoor E, Eberhardt A, Berveiller M (1996) Micromechanical modelling of superelasticity in shape memory alloys. Le J de Physique IV 6(C1):C1-277
14.
Zurück zum Zitat Raniecki B, Lexcellent C, Tanaka K (1992) Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Arch Mech, Archiwum Mechaniki Stosowanej 44:261–284 Raniecki B, Lexcellent C, Tanaka K (1992) Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Arch Mech, Archiwum Mechaniki Stosowanej 44:261–284
15.
Zurück zum Zitat Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–37CrossRef Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–37CrossRef
16.
Zurück zum Zitat Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242CrossRef Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242CrossRef
17.
Zurück zum Zitat Enkovaara J, Heczko O, Ayuela A, Nieminen RM (2003) Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni 2 MnGa. Phys Rev B 67(21):212405CrossRef Enkovaara J, Heczko O, Ayuela A, Nieminen RM (2003) Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni 2 MnGa. Phys Rev B 67(21):212405CrossRef
18.
Zurück zum Zitat Entel P, Buchelnikov V, Gruner ME, Hucht A, Khovailo VV, Nayak SK, Zayak AT (2008) Shape memory alloys: a summary of recent achievements. In: Materials science forum. Trans Tech Publ, pp 21–41 Entel P, Buchelnikov V, Gruner ME, Hucht A, Khovailo VV, Nayak SK, Zayak AT (2008) Shape memory alloys: a summary of recent achievements. In: Materials science forum. Trans Tech Publ, pp 21–41
19.
Zurück zum Zitat Wagner M-X, Windl W (2008) Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Mater 56(20):6232–6245CrossRef Wagner M-X, Windl W (2008) Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Mater 56(20):6232–6245CrossRef
20.
Zurück zum Zitat Wagner MFX, Windl W (2009) Elastic anisotropy of Ni4Ti3 from first principles. Scripta Mater 60(4):207–210CrossRef Wagner MFX, Windl W (2009) Elastic anisotropy of Ni4Ti3 from first principles. Scripta Mater 60(4):207–210CrossRef
21.
Zurück zum Zitat Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge
22.
Zurück zum Zitat Khan AS, Huang S (1995) Continuum theory of plasticity. Wiley, New York Khan AS, Huang S (1995) Continuum theory of plasticity. Wiley, New York
23.
Zurück zum Zitat Tanaka K, Nagaki S (1982) A thermomechanical description of materials with internal variables in the process of phase transitions. Arch Appl Mech 51(5):287–299 Tanaka K, Nagaki S (1982) A thermomechanical description of materials with internal variables in the process of phase transitions. Arch Appl Mech 51(5):287–299
24.
Zurück zum Zitat Liang C, Rogers CA (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8(4):285–302CrossRef Liang C, Rogers CA (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8(4):285–302CrossRef
25.
Zurück zum Zitat Auricchio F, Reali A, Stefanelli U (2007) A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int J Plast 23(2):207–226CrossRef Auricchio F, Reali A, Stefanelli U (2007) A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int J Plast 23(2):207–226CrossRef
26.
Zurück zum Zitat Boyd JG, Lagoudas DC (1994) Thermomechanical response of shape memory composites. J Intell Mater Syst Struct 5(3):333–346CrossRef Boyd JG, Lagoudas DC (1994) Thermomechanical response of shape memory composites. J Intell Mater Syst Struct 5(3):333–346CrossRef
27.
Zurück zum Zitat Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50:629–646CrossRef Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50:629–646CrossRef
28.
Zurück zum Zitat Pelton A, Schroeder V, Mitchell M, Gong X-Y, Barney M, Robertson S (2008) Fatigue and durability of Nitinol stents. J Mech Behav Biomed Mater 1(2):153–164CrossRef Pelton A, Schroeder V, Mitchell M, Gong X-Y, Barney M, Robertson S (2008) Fatigue and durability of Nitinol stents. J Mech Behav Biomed Mater 1(2):153–164CrossRef
29.
Zurück zum Zitat Lecce L (2014) Shape memory alloy engineering: for aerospace. Elsevier, Structural and Biomedical Applications Lecce L (2014) Shape memory alloy engineering: for aerospace. Elsevier, Structural and Biomedical Applications
30.
Zurück zum Zitat Saleeb A, Padula S, Kumar A (2011) A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int J Plast 27(5):655–687CrossRef Saleeb A, Padula S, Kumar A (2011) A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int J Plast 27(5):655–687CrossRef
31.
Zurück zum Zitat Tarnita D, Tarnita D, Bolcu D (2011) Orthopaedic modular implants based on shape memory alloys. INTECH Open Access Publisher, ViennaCrossRef Tarnita D, Tarnita D, Bolcu D (2011) Orthopaedic modular implants based on shape memory alloys. INTECH Open Access Publisher, ViennaCrossRef
32.
Zurück zum Zitat Stupkiewicz S, Petryk H (2013) A robust model of pseudoelasticity in shape memory alloys. Int J Numer Meth Eng 93(7):747–769CrossRef Stupkiewicz S, Petryk H (2013) A robust model of pseudoelasticity in shape memory alloys. Int J Numer Meth Eng 93(7):747–769CrossRef
33.
Zurück zum Zitat Sun QP, Hwang KC (1993) Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys—I. Derivation of general relations. J Mech Phys Solids 41(1):1–17CrossRef Sun QP, Hwang KC (1993) Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys—I. Derivation of general relations. J Mech Phys Solids 41(1):1–17CrossRef
34.
Zurück zum Zitat Goo B, Lexcellent C (1997) Micromechanics-based modeling of two-way memory effect of a single crystalline shape-memory alloy. Acta Mater 45(2):727–737CrossRef Goo B, Lexcellent C (1997) Micromechanics-based modeling of two-way memory effect of a single crystalline shape-memory alloy. Acta Mater 45(2):727–737CrossRef
35.
Zurück zum Zitat Gao X, Huang M, Brinson LC (2000) A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model. Int J Plast 16(10):1345–1369CrossRef Gao X, Huang M, Brinson LC (2000) A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model. Int J Plast 16(10):1345–1369CrossRef
36.
Zurück zum Zitat Vivet A, Lexcellent C (1998) Micromechanical modelling for tension–compression pseudoelastic behavior of AuCd single crystals. Eur Phys J Appl Phys 4(2):125–132CrossRef Vivet A, Lexcellent C (1998) Micromechanical modelling for tension–compression pseudoelastic behavior of AuCd single crystals. Eur Phys J Appl Phys 4(2):125–132CrossRef
37.
Zurück zum Zitat Lu Z, Weng G (1997) Martensitic transformation and stress-strain relations of shape-memory alloys. J Mech Phys Solids 45(11–12):19051923–19211928 Lu Z, Weng G (1997) Martensitic transformation and stress-strain relations of shape-memory alloys. J Mech Phys Solids 45(11–12):19051923–19211928
38.
Zurück zum Zitat Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, The Royal Society, pp 376–396 Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, The Royal Society, pp 376–396
39.
Zurück zum Zitat Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490CrossRef Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490CrossRef
40.
Zurück zum Zitat Chumlyakov YI, Kireeva I, Panchenko EY, Timofeeva EE, Kretinina I, Kuts O, Karaman I, Maier HJ (2017) Shape memory effect and superelasticity in single crystals of high-strength ferromagnetic alloys. In: Advanced materials research, Trans Tech Publ, pp 15–22 Chumlyakov YI, Kireeva I, Panchenko EY, Timofeeva EE, Kretinina I, Kuts O, Karaman I, Maier HJ (2017) Shape memory effect and superelasticity in single crystals of high-strength ferromagnetic alloys. In: Advanced materials research, Trans Tech Publ, pp 15–22
41.
Zurück zum Zitat Ma J, Hornbuckle B, Karaman I, Thompson G, Luo Z, Chumlyakov Y (2013) The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater 61(9):3445–3455CrossRef Ma J, Hornbuckle B, Karaman I, Thompson G, Luo Z, Chumlyakov Y (2013) The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater 61(9):3445–3455CrossRef
42.
Zurück zum Zitat Gall K, Sehitoglu H, Chumlyakov YI, Kireeva I (1999) Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater 47(4):1203–1217CrossRef Gall K, Sehitoglu H, Chumlyakov YI, Kireeva I (1999) Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater 47(4):1203–1217CrossRef
43.
Zurück zum Zitat Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV, Maier HJ (1999) The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi: part II—discussion of experimental results. J Eng Mater Technol 121(1):28–37CrossRef Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV, Maier HJ (1999) The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi: part II—discussion of experimental results. J Eng Mater Technol 121(1):28–37CrossRef
44.
Zurück zum Zitat Schryvers D, Tirry W, Yang Z (2006) Measuring strain fields and concentration gradients around Ni4Ti3 precipitates. Mater Sci Eng, A 438:485–488CrossRef Schryvers D, Tirry W, Yang Z (2006) Measuring strain fields and concentration gradients around Ni4Ti3 precipitates. Mater Sci Eng, A 438:485–488CrossRef
45.
Zurück zum Zitat Tirry W, Schryvers D (2005) Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi. Acta Mater 53(4):1041–1049CrossRef Tirry W, Schryvers D (2005) Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi. Acta Mater 53(4):1041–1049CrossRef
46.
Zurück zum Zitat Delaey L, Ortin J, Van Humbeeck J (1987) Hysteresis effects in martensitic non-ferrous alloys. In: Proceedings of the phase transformations’87, pp 60–66 Delaey L, Ortin J, Van Humbeeck J (1987) Hysteresis effects in martensitic non-ferrous alloys. In: Proceedings of the phase transformations’87, pp 60–66
47.
Zurück zum Zitat Fischer F, Tanaka K (1992) A micromechanical model for the kinetics of martensitic transformation. Int J Solids Struct 29(14–15):1723–1728CrossRef Fischer F, Tanaka K (1992) A micromechanical model for the kinetics of martensitic transformation. Int J Solids Struct 29(14–15):1723–1728CrossRef
48.
Zurück zum Zitat Huang M, Gao X, Brinson LC (2000) A multivariant micromechanical model for SMAs Part 2. Polycrystal model. Int J Plast 16(10):1371–1390CrossRef Huang M, Gao X, Brinson LC (2000) A multivariant micromechanical model for SMAs Part 2. Polycrystal model. Int J Plast 16(10):1371–1390CrossRef
49.
Zurück zum Zitat Baxevanis T, Cox A, Lagoudas D (2014) Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys. Acta Mech 225(4–5):1167–1185CrossRef Baxevanis T, Cox A, Lagoudas D (2014) Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys. Acta Mech 225(4–5):1167–1185CrossRef
50.
Zurück zum Zitat Cox A, Franco B, Wang S, Baxevanis T, Karaman I, Lagoudas D (2017) Predictive modeling of the constitutive response of precipitation hardened Ni-rich NiTi. Shape Mem Superelast 3(1):9–23CrossRef Cox A, Franco B, Wang S, Baxevanis T, Karaman I, Lagoudas D (2017) Predictive modeling of the constitutive response of precipitation hardened Ni-rich NiTi. Shape Mem Superelast 3(1):9–23CrossRef
51.
Zurück zum Zitat Joy JK, Solomou A, Baxevanis T, Lagoudas DC (2017) Predicting the constitutive response of precipitation hardened NiTiHf, SPIE smart structures and materials + nondestructive evaluation and health monitoring. In: International society for optics and photonics, pp 101650F-101650F-101659 Joy JK, Solomou A, Baxevanis T, Lagoudas DC (2017) Predicting the constitutive response of precipitation hardened NiTiHf, SPIE smart structures and materials + nondestructive evaluation and health monitoring. In: International society for optics and photonics, pp 101650F-101650F-101659
52.
Zurück zum Zitat Pun GP, Yamakov V, Mishin Y (2015) Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Modell Simul Mater Sci Eng 23(6):065006CrossRef Pun GP, Yamakov V, Mishin Y (2015) Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Modell Simul Mater Sci Eng 23(6):065006CrossRef
53.
Zurück zum Zitat Yamakov V, Hochhalter J, Leser W, Warner J, Newman J, Pun GP, Mishin Y (2016) Multiscale modeling of sensory properties of Co–Ni–Al shape memory particles embedded in an Al metal matrix. J Mater Sci 51(3):1204–1216CrossRef Yamakov V, Hochhalter J, Leser W, Warner J, Newman J, Pun GP, Mishin Y (2016) Multiscale modeling of sensory properties of Co–Ni–Al shape memory particles embedded in an Al metal matrix. J Mater Sci 51(3):1204–1216CrossRef
54.
Zurück zum Zitat Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, CambridgeCrossRef Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, CambridgeCrossRef
55.
Zurück zum Zitat Farkas D, Roqueta D, Vilette A, Ternes K (1996) Atomistic simulations in ternary Ni-Ti-Al alloys. Modell Simul Mater Sci Eng 4(4):359CrossRef Farkas D, Roqueta D, Vilette A, Ternes K (1996) Atomistic simulations in ternary Ni-Ti-Al alloys. Modell Simul Mater Sci Eng 4(4):359CrossRef
56.
Zurück zum Zitat Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443CrossRef Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443CrossRef
57.
Zurück zum Zitat Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983CrossRef Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983CrossRef
58.
59.
Zurück zum Zitat Kastner O (2003) Molecular-dynamics of a 2D model of the shape memory effect. Continuum Mech Thermodyn 15(5):487–502CrossRef Kastner O (2003) Molecular-dynamics of a 2D model of the shape memory effect. Continuum Mech Thermodyn 15(5):487–502CrossRef
60.
Zurück zum Zitat Kastner O (2012) First principles modelling of shape memory alloys: molecular dynamics simulations. Springer, New YorkCrossRef Kastner O (2012) First principles modelling of shape memory alloys: molecular dynamics simulations. Springer, New YorkCrossRef
61.
Zurück zum Zitat Kastner O, Eggeler G, Weiss W, Ackland GJ (2011) Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations. J Mech Phys Solids 59(9):1888–1908CrossRef Kastner O, Eggeler G, Weiss W, Ackland GJ (2011) Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations. J Mech Phys Solids 59(9):1888–1908CrossRef
62.
Zurück zum Zitat Lai WS, Liu BX (2000) Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering. J Phys 12(5):L53 Lai WS, Liu BX (2000) Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering. J Phys 12(5):L53
63.
Zurück zum Zitat Lai WS, Zhang Q, Liu BX, Ma E (2000) Structural stability and amorphization transition in the Ni–Ti system studied by molecular dynamics simulation with an n-body potential. J Phys Soc Jpn 69(9):2923–2937CrossRef Lai WS, Zhang Q, Liu BX, Ma E (2000) Structural stability and amorphization transition in the Ni–Ti system studied by molecular dynamics simulation with an n-body potential. J Phys Soc Jpn 69(9):2923–2937CrossRef
64.
Zurück zum Zitat Mutter D, Nielaba P (2011) Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles. The European Physical Journal B 84(1):109–113CrossRef Mutter D, Nielaba P (2011) Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles. The European Physical Journal B 84(1):109–113CrossRef
65.
Zurück zum Zitat Mutter D, Nielaba P (2010) Simulation of structural phase transitions in NiTi. Phys Rev B 82(22):224201CrossRef Mutter D, Nielaba P (2010) Simulation of structural phase transitions in NiTi. Phys Rev B 82(22):224201CrossRef
66.
Zurück zum Zitat Mirzaeifar R, Gall K, Zhu T, Yavari A, DesRoches R (2014) Structural transformations in NiTi shape memory alloy nanowires. J Appl Phys 115(19):194307CrossRef Mirzaeifar R, Gall K, Zhu T, Yavari A, DesRoches R (2014) Structural transformations in NiTi shape memory alloy nanowires. J Appl Phys 115(19):194307CrossRef
67.
Zurück zum Zitat Yin Q, Wu X, Huang C, Wang X, Wei Y (2015) Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression. Phil Mag 95(23):2491–2512CrossRef Yin Q, Wu X, Huang C, Wang X, Wei Y (2015) Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression. Phil Mag 95(23):2491–2512CrossRef
68.
Zurück zum Zitat Zhong Y, Gall K, Zhu T (2011) Atomistic study of nanotwins in NiTi shape memory alloys. J Appl Phys 110(3):033532CrossRef Zhong Y, Gall K, Zhu T (2011) Atomistic study of nanotwins in NiTi shape memory alloys. J Appl Phys 110(3):033532CrossRef
69.
Zurück zum Zitat Zhong Y, Gall K, Zhu T (2012) Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars. Acta Mater 60(18):6301–6311CrossRef Zhong Y, Gall K, Zhu T (2012) Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars. Acta Mater 60(18):6301–6311CrossRef
70.
Zurück zum Zitat Ren G, Sehitoglu H (2016) Interatomic potential for the NiTi alloy and its application. Comput Mater Sci 123:19–25CrossRef Ren G, Sehitoglu H (2016) Interatomic potential for the NiTi alloy and its application. Comput Mater Sci 123:19–25CrossRef
71.
Zurück zum Zitat Baskes M (1997) Determination of modified embedded atom method parameters for nickel. Mater Chem Phys 50(2):152–158CrossRef Baskes M (1997) Determination of modified embedded atom method parameters for nickel. Mater Chem Phys 50(2):152–158CrossRef
72.
Zurück zum Zitat Lee B-J, Baskes M (2000) Second nearest-neighbor modified embedded-atom-method potential. Phys Rev B 62(13):8564CrossRef Lee B-J, Baskes M (2000) Second nearest-neighbor modified embedded-atom-method potential. Phys Rev B 62(13):8564CrossRef
73.
Zurück zum Zitat Lee B-J, Baskes M, Kim H, Cho YK (2001) Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B 64(18):184102CrossRef Lee B-J, Baskes M, Kim H, Cho YK (2001) Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B 64(18):184102CrossRef
74.
Zurück zum Zitat Ishida H, Hiwatari Y (2007) MD simulation of martensitic transformations in TiNi alloys with MEAM. Mol Simul 33(4–5):459–461CrossRef Ishida H, Hiwatari Y (2007) MD simulation of martensitic transformations in TiNi alloys with MEAM. Mol Simul 33(4–5):459–461CrossRef
75.
Zurück zum Zitat Ko W-S, Grabowski B, Neugebauer J (2015) Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Phys Rev B 92(13):134107CrossRef Ko W-S, Grabowski B, Neugebauer J (2015) Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Phys Rev B 92(13):134107CrossRef
76.
Zurück zum Zitat Mutter D, Nielaba P (2013) Simulation of the shape memory effect in a NiTi nano model system. J Alloy Compd 577:S83–S87CrossRef Mutter D, Nielaba P (2013) Simulation of the shape memory effect in a NiTi nano model system. J Alloy Compd 577:S83–S87CrossRef
77.
Zurück zum Zitat Chowdhury P, Ren G, Sehitoglu H (2015) NiTi superelasticity via atomistic simulations. Philos Mag Lett 95(12):574–586CrossRef Chowdhury P, Ren G, Sehitoglu H (2015) NiTi superelasticity via atomistic simulations. Philos Mag Lett 95(12):574–586CrossRef
78.
Zurück zum Zitat Ko W-S, Maisel SB, Grabowski B, Jeon JB, Neugebauer J (2017) Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Mater 123:90–101CrossRef Ko W-S, Maisel SB, Grabowski B, Jeon JB, Neugebauer J (2017) Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Mater 123:90–101CrossRef
79.
Zurück zum Zitat Nam TH, Saburi T (1990) K.i. Shimizu, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Mater Trans, JIM 31(11):959–967CrossRef Nam TH, Saburi T (1990) K.i. Shimizu, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Mater Trans, JIM 31(11):959–967CrossRef
80.
Zurück zum Zitat Nam TH, Saburi T, Nakata Y (1990) K.i. Shimizu, Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Mater Trans, JIM 31(12):1050–1056CrossRef Nam TH, Saburi T, Nakata Y (1990) K.i. Shimizu, Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Mater Trans, JIM 31(12):1050–1056CrossRef
81.
Zurück zum Zitat Frenzel J, Pfetzing J, Neuking K, Eggeler G (2008) On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni–Ti–Fe shape memory alloys. Mater Sci Eng, A 481:635–638CrossRef Frenzel J, Pfetzing J, Neuking K, Eggeler G (2008) On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni–Ti–Fe shape memory alloys. Mater Sci Eng, A 481:635–638CrossRef
82.
Zurück zum Zitat Huang X, Ackland GJ, Rabe KM (2003) Crystal structures and shape-memory behaviour of NiTi. Nat Mater 2(5):307–311CrossRef Huang X, Ackland GJ, Rabe KM (2003) Crystal structures and shape-memory behaviour of NiTi. Nat Mater 2(5):307–311CrossRef
83.
Zurück zum Zitat Hatcher N, Kontsevoi OY, Freeman AJ (2009) Martensitic transformation path of NiTi. Phys Rev B 79(2):020202CrossRef Hatcher N, Kontsevoi OY, Freeman AJ (2009) Martensitic transformation path of NiTi. Phys Rev B 79(2):020202CrossRef
84.
Zurück zum Zitat Vishnu KG, Strachan A (2010) Phase stability and transformations in NiTi from density functional theory calculations. Acta Mater 58(3):745–752CrossRef Vishnu KG, Strachan A (2010) Phase stability and transformations in NiTi from density functional theory calculations. Acta Mater 58(3):745–752CrossRef
85.
Zurück zum Zitat Hatcher N, Kontsevoi OY, Freeman AJ (2009) Role of elastic and shear stabilities in the martensitic transformation path of NiTi. Phys Rev B 80(14):144203CrossRef Hatcher N, Kontsevoi OY, Freeman AJ (2009) Role of elastic and shear stabilities in the martensitic transformation path of NiTi. Phys Rev B 80(14):144203CrossRef
86.
Zurück zum Zitat Morris JR, Ye Y, Krcmar M, Fu CL (2006) The role of phase stability in ductile, ordered B2 intermetallics. In: MRS proceedings, Cambridge Univ Press, pp 0980-II0906-0910 Morris JR, Ye Y, Krcmar M, Fu CL (2006) The role of phase stability in ductile, ordered B2 intermetallics. In: MRS proceedings, Cambridge Univ Press, pp 0980-II0906-0910
87.
Zurück zum Zitat Chowdhury P, Patriarca L, Ren G, Sehitoglu H (2016) Molecular dynamics modeling of NiTi superelasticity in presence of nanoprecipitates. Int J Plast 81:152–167CrossRef Chowdhury P, Patriarca L, Ren G, Sehitoglu H (2016) Molecular dynamics modeling of NiTi superelasticity in presence of nanoprecipitates. Int J Plast 81:152–167CrossRef
88.
Zurück zum Zitat Sato T, Saitoh K, Shinke N (2008) Atomistic modelling of reversible phase transformations in Ni–Ti alloys: a molecular dynamics study. Mater Sci Eng, A 481:250–253 Sato T, Saitoh K, Shinke N (2008) Atomistic modelling of reversible phase transformations in Ni–Ti alloys: a molecular dynamics study. Mater Sci Eng, A 481:250–253
89.
Zurück zum Zitat Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni 4 Ti 3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50(17):4255–4274CrossRef Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni 4 Ti 3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50(17):4255–4274CrossRef
90.
Zurück zum Zitat Saburi T, Nenno S, Fukuda T (1986) Crystal structure and morphology of the metastable X phase in shape memory Ti-Ni alloys. J Less Common Met 125:157–166CrossRef Saburi T, Nenno S, Fukuda T (1986) Crystal structure and morphology of the metastable X phase in shape memory Ti-Ni alloys. J Less Common Met 125:157–166CrossRef
91.
Zurück zum Zitat Tadaki T, Nakata Y, Shimizu KI, Otsuka K (1986) Crystal structure, composition and morphology of a precipitate in an aged Ti-51 at% Ni shape memory alloy. Trans Jpn Inst Met 27(10):731–740CrossRef Tadaki T, Nakata Y, Shimizu KI, Otsuka K (1986) Crystal structure, composition and morphology of a precipitate in an aged Ti-51 at% Ni shape memory alloy. Trans Jpn Inst Met 27(10):731–740CrossRef
92.
Zurück zum Zitat Bataillard L, Bidaux J-E, Gotthardt R (1998) Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in situ transmission electron microscopy observations. Philos Mag A 78(2):327–344CrossRef Bataillard L, Bidaux J-E, Gotthardt R (1998) Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in situ transmission electron microscopy observations. Philos Mag A 78(2):327–344CrossRef
93.
Zurück zum Zitat Khovailo V, Takagi T, Vasilev A, Miki H, Matsumoto M, Kainuma R (2001) On order–disorder (L21 → B2′) Phase transition in Ni2 + xMn1—xGa heusler alloys. Physica Status Solidi(a) 183(2):R1–R3CrossRef Khovailo V, Takagi T, Vasilev A, Miki H, Matsumoto M, Kainuma R (2001) On order–disorder (L21 → B2′) Phase transition in Ni2 + xMn1—xGa heusler alloys. Physica Status Solidi(a) 183(2):R1–R3CrossRef
94.
Zurück zum Zitat Brown P, Crangle J, Kanomata T, Matsumoto M, Neumann K, Ouladdiaf B, Ziebeck K (2002) The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J Phys 14(43):10159 Brown P, Crangle J, Kanomata T, Matsumoto M, Neumann K, Ouladdiaf B, Ziebeck K (2002) The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J Phys 14(43):10159
95.
Zurück zum Zitat Pons J, Santamarta R, Chernenko V, Cesari E (2003) HREM study of different martensitic phases in Ni–Mn–Ga alloys. Mater Chem Phys 81(2):457–459CrossRef Pons J, Santamarta R, Chernenko V, Cesari E (2003) HREM study of different martensitic phases in Ni–Mn–Ga alloys. Mater Chem Phys 81(2):457–459CrossRef
96.
Zurück zum Zitat Pons J, Santamarta R, Chernenko VA, Cesari E (2005) Long-period martensitic structures of Ni-Mn-Ga alloys studied by high-resolution transmission electron microscopy. J Appl Phys 97(8):083516CrossRef Pons J, Santamarta R, Chernenko VA, Cesari E (2005) Long-period martensitic structures of Ni-Mn-Ga alloys studied by high-resolution transmission electron microscopy. J Appl Phys 97(8):083516CrossRef
97.
Zurück zum Zitat Sozinov A, Likhachev A, Lanska N, Söderberg O, Ullakko K, Lindroos V (2004) Stress-and magnetic-field-induced variant rearrangement in Ni–Mn–Ga single crystals with seven-layered martensitic structure. Mater Sci Eng, A 378(1):399–402CrossRef Sozinov A, Likhachev A, Lanska N, Söderberg O, Ullakko K, Lindroos V (2004) Stress-and magnetic-field-induced variant rearrangement in Ni–Mn–Ga single crystals with seven-layered martensitic structure. Mater Sci Eng, A 378(1):399–402CrossRef
98.
Zurück zum Zitat Enkovaara J (2003) Atomistic simulations of magnetic shape memory alloys. Helsinki University of Technology, Espoo Enkovaara J (2003) Atomistic simulations of magnetic shape memory alloys. Helsinki University of Technology, Espoo
99.
Zurück zum Zitat Webster P, Ziebeck K, Town S, Peak M (1984) Magnetic order and phase transformation in Ni2MnGa. Philos Mag B 49(3):295–310CrossRef Webster P, Ziebeck K, Town S, Peak M (1984) Magnetic order and phase transformation in Ni2MnGa. Philos Mag B 49(3):295–310CrossRef
100.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2016) Significance of slip propensity determination in shape memory alloys. Scripta Mater 119:82–87CrossRef Chowdhury P, Sehitoglu H (2016) Significance of slip propensity determination in shape memory alloys. Scripta Mater 119:82–87CrossRef
101.
Zurück zum Zitat Holec D, Friák M, Dlouhý A, Neugebauer J (2011) Ab initio study of pressure stabilized NiTi allotropes: pressure-induced transformations and hysteresis loops. Phys Rev B 84(22):224119CrossRef Holec D, Friák M, Dlouhý A, Neugebauer J (2011) Ab initio study of pressure stabilized NiTi allotropes: pressure-induced transformations and hysteresis loops. Phys Rev B 84(22):224119CrossRef
102.
Zurück zum Zitat Chernenko V, Segui C, Cesari E, Pons J, Kokorin V (1998) Sequence of martensitic transformations in Ni-Mn-Ga alloys. Phys Rev B 57(5):2659CrossRef Chernenko V, Segui C, Cesari E, Pons J, Kokorin V (1998) Sequence of martensitic transformations in Ni-Mn-Ga alloys. Phys Rev B 57(5):2659CrossRef
103.
Zurück zum Zitat Segui C, Chernenko V, Pons J, Cesari E, Khovailo V, Takagi T (2005) Low temperature-induced intermartensitic phase transformations in Ni–Mn–Ga single crystal. Acta Mater 53(1):111–120CrossRef Segui C, Chernenko V, Pons J, Cesari E, Khovailo V, Takagi T (2005) Low temperature-induced intermartensitic phase transformations in Ni–Mn–Ga single crystal. Acta Mater 53(1):111–120CrossRef
104.
Zurück zum Zitat Kimiecik M, Jones JW, Daly S (2016) The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA Nickel-Titanium. J Mech Phys Solids 89:16–30CrossRef Kimiecik M, Jones JW, Daly S (2016) The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA Nickel-Titanium. J Mech Phys Solids 89:16–30CrossRef
105.
Zurück zum Zitat Yawny A, Sade M, Eggeler G (2005) Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires. Zeitschrift für metallkunde 96(6):608–618CrossRef Yawny A, Sade M, Eggeler G (2005) Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires. Zeitschrift für metallkunde 96(6):608–618CrossRef
106.
Zurück zum Zitat Eucken S, Duerig TW (1989) The effects of pseudoelastic prestraining on the tensile behaviour and two-way shape memory effect in aged NiTi. Acta Metall 37(8):2245–2252CrossRef Eucken S, Duerig TW (1989) The effects of pseudoelastic prestraining on the tensile behaviour and two-way shape memory effect in aged NiTi. Acta Metall 37(8):2245–2252CrossRef
107.
Zurück zum Zitat Chowdhury PB (2016) Modeling mechanical properties–linking atomistics to continuum. University of Illinois at Urbana-Champaign, Urbana Chowdhury PB (2016) Modeling mechanical properties–linking atomistics to continuum. University of Illinois at Urbana-Champaign, Urbana
108.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2018) Atomistic energetics and critical twinning stress prediction in face and body centered cubic metals: recent progress. J Eng Mater Technol 140(2):020801CrossRef Chowdhury P, Sehitoglu H (2018) Atomistic energetics and critical twinning stress prediction in face and body centered cubic metals: recent progress. J Eng Mater Technol 140(2):020801CrossRef
109.
Zurück zum Zitat Chowdhury P, Sehitoglu H, Abuzaid W, Maier H (2015) Mechanical response of low stacking fault energy Co–Ni alloys–Continuum, mesoscopic and atomic level treatments. Int J Plast 71:32–61CrossRef Chowdhury P, Sehitoglu H, Abuzaid W, Maier H (2015) Mechanical response of low stacking fault energy Co–Ni alloys–Continuum, mesoscopic and atomic level treatments. Int J Plast 71:32–61CrossRef
110.
Zurück zum Zitat Chowdhury P, Sehitoglu H, Maier H, Rateick R (2016) Strength prediction in NiCo alloys–the role of composition and nanotwins. Int J Plast 79:237–258CrossRef Chowdhury P, Sehitoglu H, Maier H, Rateick R (2016) Strength prediction in NiCo alloys–the role of composition and nanotwins. Int J Plast 79:237–258CrossRef
111.
Zurück zum Zitat Suresh S (1998) Fatigue of materials. Cambridge University Press, CambridgeCrossRef Suresh S (1998) Fatigue of materials. Cambridge University Press, CambridgeCrossRef
112.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2016) Mechanisms of fatigue crack growth–a critical digest of theoretical developments. Fatigue Fract Eng Mater Struct 39(6):652–674CrossRef Chowdhury P, Sehitoglu H (2016) Mechanisms of fatigue crack growth–a critical digest of theoretical developments. Fatigue Fract Eng Mater Struct 39(6):652–674CrossRef
113.
Zurück zum Zitat Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng, A 378(1):24–33CrossRef Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng, A 378(1):24–33CrossRef
114.
Zurück zum Zitat Sedmák P, Šittner P, Pilch J, Curfs C (2015) Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater 94:257–270CrossRef Sedmák P, Šittner P, Pilch J, Curfs C (2015) Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater 94:257–270CrossRef
115.
Zurück zum Zitat Pelton A (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4–5):613–617CrossRef Pelton A (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4–5):613–617CrossRef
116.
Zurück zum Zitat Chowdhury P, Sehitoglu H, Rateick R (2018) Damage tolerance of carbon-carbon composites in aerospace application. Carbon 126:382–393CrossRef Chowdhury P, Sehitoglu H, Rateick R (2018) Damage tolerance of carbon-carbon composites in aerospace application. Carbon 126:382–393CrossRef
117.
Zurück zum Zitat Horstemeyer M, Farkas D, Kim S, Tang T, Potirniche G (2010) Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue. Int J Fatigue 32(9):1473–1502CrossRef Horstemeyer M, Farkas D, Kim S, Tang T, Potirniche G (2010) Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue. Int J Fatigue 32(9):1473–1502CrossRef
118.
Zurück zum Zitat Potirniche G, Horstemeyer M, Gullett P, Jelinek B (2006) Atomistic modelling of fatigue crack growth and dislocation structuring in FCC crystals. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, The Royal Society, pp 3707–3731 Potirniche G, Horstemeyer M, Gullett P, Jelinek B (2006) Atomistic modelling of fatigue crack growth and dislocation structuring in FCC crystals. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, The Royal Society, pp 3707–3731
119.
Zurück zum Zitat Tang T, Kim S, Horstemeyer M (2010) Fatigue crack growth in magnesium single crystals under cyclic loading: molecular dynamics simulation. Comput Mater Sci 48(2):426–439CrossRef Tang T, Kim S, Horstemeyer M (2010) Fatigue crack growth in magnesium single crystals under cyclic loading: molecular dynamics simulation. Comput Mater Sci 48(2):426–439CrossRef
120.
Zurück zum Zitat Baker KL, Warner D (2014) An atomistic investigation into the nature of near threshold fatigue crack growth in aluminum alloys. Eng Fract Mech 115:111–121CrossRef Baker KL, Warner D (2014) An atomistic investigation into the nature of near threshold fatigue crack growth in aluminum alloys. Eng Fract Mech 115:111–121CrossRef
121.
Zurück zum Zitat Zamora R, Baker K, Warner D (2015) Illuminating the chemo-mechanics of hydrogen enhanced fatigue crack growth in aluminum alloys. Acta Mater 100:232–239CrossRef Zamora R, Baker K, Warner D (2015) Illuminating the chemo-mechanics of hydrogen enhanced fatigue crack growth in aluminum alloys. Acta Mater 100:232–239CrossRef
122.
Zurück zum Zitat Chowdhury PB, Sehitoglu H, Rateick RG, Maier HJ (2013) Modeling fatigue crack growth resistance of nanocrystalline alloys. Acta Mater 61(7):2531–2547CrossRef Chowdhury PB, Sehitoglu H, Rateick RG, Maier HJ (2013) Modeling fatigue crack growth resistance of nanocrystalline alloys. Acta Mater 61(7):2531–2547CrossRef
123.
Zurück zum Zitat Chowdhury PB, Sehitoglu H, Rateick RG (2014) Predicting fatigue resistance of nano-twinned materials: part I-Role of cyclic slip irreversibility and Peierls stress. Int J Fatigue 68:277–291CrossRef Chowdhury PB, Sehitoglu H, Rateick RG (2014) Predicting fatigue resistance of nano-twinned materials: part I-Role of cyclic slip irreversibility and Peierls stress. Int J Fatigue 68:277–291CrossRef
124.
Zurück zum Zitat Chowdhury PB, Sehitoglu H, Rateick RG (2014) Predicting fatigue resistance of nano-twinned materials: part II–Effective threshold stress intensity factor range. Int J Fatigue 68:292–301CrossRef Chowdhury PB, Sehitoglu H, Rateick RG (2014) Predicting fatigue resistance of nano-twinned materials: part II–Effective threshold stress intensity factor range. Int J Fatigue 68:292–301CrossRef
125.
Zurück zum Zitat Chowdhury P (2011) Fatigue crack growth (FCG) modeling in the presence of nano-obstacles. University of Illinois at Urbana-Champaign, Urbana Chowdhury P (2011) Fatigue crack growth (FCG) modeling in the presence of nano-obstacles. University of Illinois at Urbana-Champaign, Urbana
126.
Zurück zum Zitat Alkan S, Chowdhury P, Sehitoglu H, Rateick RG, Maier HJ (2016) Role of nanotwins on fatigue crack growth resistance–Experiments and theory. Int J Fatigue 84:28–39CrossRef Alkan S, Chowdhury P, Sehitoglu H, Rateick RG, Maier HJ (2016) Role of nanotwins on fatigue crack growth resistance–Experiments and theory. Int J Fatigue 84:28–39CrossRef
127.
Zurück zum Zitat Niemann R, Rößler UK, Gruner ME, Heczko O, Schultz L, Fähler S (2012) The role of adaptive martensite in magnetic shape memory alloys. Adv Eng Mater 14(8):562–581CrossRef Niemann R, Rößler UK, Gruner ME, Heczko O, Schultz L, Fähler S (2012) The role of adaptive martensite in magnetic shape memory alloys. Adv Eng Mater 14(8):562–581CrossRef
128.
Zurück zum Zitat Entel P, Siewert M, Gruner ME, Herper HC, Comtesse D, Arróyave R, Singh N, Talapatra A, Sokolovskiy VV, Buchelnikov VD (2013) Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles. Eur Phys J B 86(2):1–11CrossRef Entel P, Siewert M, Gruner ME, Herper HC, Comtesse D, Arróyave R, Singh N, Talapatra A, Sokolovskiy VV, Buchelnikov VD (2013) Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles. Eur Phys J B 86(2):1–11CrossRef
129.
Zurück zum Zitat Chowdhury P, Sehitoglu H, Rateick R (2016) Recent advances in modeling fatigue cracks at microscale in the presence of high density coherent twin interfaces. Curr Opin Solid State Mater Sci 20(3):140–150CrossRef Chowdhury P, Sehitoglu H, Rateick R (2016) Recent advances in modeling fatigue cracks at microscale in the presence of high density coherent twin interfaces. Curr Opin Solid State Mater Sci 20(3):140–150CrossRef
Metadaten
Titel
Frontiers of Theoretical Research on Shape Memory Alloys: A General Overview
verfasst von
Piyas Chowdhury
Publikationsdatum
08.03.2018
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2018
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-018-0161-4

Weitere Artikel der Ausgabe 1/2018

Shape Memory and Superelasticity 1/2018 Zur Ausgabe

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER

Straightforward Downsizing of Inclusions in NiTi Alloys: A New Generation of SMA Wires with Outstanding Fatigue Life

SPECIAL ISSUE: SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE 2017, INVITED PAPER

Effects of Tube Processing on the Fatigue Life of Nitinol

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER

H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-Temperature Shape Memory Alloys

SPECIAL ISSUE: A TRIBUTE TO PROF. SHUICHI MIYAZAKI – FROM FUNDAMENTALS TO APPLICATIONS, INVITED PAPER

Negative and Zero Thermal Expansion NiTi Superelastic Shape Memory Alloy by Microstructure Engineering

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER

Efficiency of Energy Harvesting in Ni–Mn–Ga Shape Memory Alloys

SPECIAL ISSUE: SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE 2017, INVITED PAPER

Martensitic Transformation in a β-Type Mg–Sc Alloy

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.