Skip to main content
Erschienen in: Journal of Scientific Computing 3/2018

25.11.2017

Frozen Gaussian Approximation-Based Artificial Boundary Conditions for One-Dimensional Nonlinear Schrödinger Equation in the Semiclassical Regime

verfasst von: Ricardo Delgadillo, Xu Yang, Jiwei Zhang

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we first analyze the stability of the unified approach, proposed in Zhang et al. (Phys Rev E 78:026709, 2008), for the nonlinear Schödinger equation in the semiclassical regime. The analysis shows that small semiclassical parameters deteriorate the accuracy of the unified approach, which will be also verified by numerical examples. Motivated by the time-splitting spectral method (Bao et al. in SIAM J Sci Comput 25:27–64, 2003), we generalize our previous work (Yang and Zhang in SIAM J Numer Anal 52:808–831, 2014), and propose frozen Gaussian approximation (FGA)-based artificial boundary conditions for solving one-dimensional nonlinear Schrödinger equation on unbounded domain. We split the linear part of the Schrödinger equation from the nonlinear part, and deal with the artificial boundary condition of the linear part by a simple strategy that all the Gaussian functions, whose dynamics are governed by the Hamiltonian flows, going out of the domain will be eliminated numerically. Since the nonlinear part is given by ordinary differential equations, it does not require artificial boundary conditions and can be solved directly. This strategy also works for the nonlinear Schrödinger equation with periodic lattice potential by using Bloch decomposition-based FGA. We present numerical examples to verify the performance of proposed numerical methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Han, H.: The Artificial Boundary Method—Numerical Solutions of Partial Differential Equations in Unbounded Domains, Frontiers and Prospents of Contemporary Applied Mathematics. Higher Education Press, World Scientific, Singapore (2005) Han, H.: The Artificial Boundary Method—Numerical Solutions of Partial Differential Equations in Unbounded Domains, Frontiers and Prospents of Contemporary Applied Mathematics. Higher Education Press, World Scientific, Singapore (2005)
4.
Zurück zum Zitat Zheng, C.: Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schröinger equations. J. Comput. Phys. 215, 552–565 (2006)MathSciNetCrossRefMATH Zheng, C.: Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schröinger equations. J. Comput. Phys. 215, 552–565 (2006)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Xu, Z., Han, H.: Absorbing boundary conditions for nonlinear Schröinger equations. Phys. Rev. E 74, 037704 (2006)CrossRef Xu, Z., Han, H.: Absorbing boundary conditions for nonlinear Schröinger equations. Phys. Rev. E 74, 037704 (2006)CrossRef
6.
Zurück zum Zitat Xu, Z., Han, H., Wu, X.: Adaptive absorbing boundary conditions for Schrödinger-type equations: application to nonlinear and multi-dimensional problems. J. Comput. Phys. 225, 1577–1589 (2007)MathSciNetCrossRefMATH Xu, Z., Han, H., Wu, X.: Adaptive absorbing boundary conditions for Schrödinger-type equations: application to nonlinear and multi-dimensional problems. J. Comput. Phys. 225, 1577–1589 (2007)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schröinger equations. Phys. Rev. E 78, 026709 (2008)CrossRef Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schröinger equations. Phys. Rev. E 78, 026709 (2008)CrossRef
8.
Zurück zum Zitat Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schröinger equations: two-dimensional case. Phys. Rev. E 79, 046711 (2009)MathSciNetCrossRef Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schröinger equations: two-dimensional case. Phys. Rev. E 79, 046711 (2009)MathSciNetCrossRef
9.
Zurück zum Zitat Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schröinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)MathSciNetCrossRefMATH Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schröinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Pang, G., Bian, L., Tang, S.: Almost exact boundary condition for one-dimensional Schrödinger equations. Phys. Rev. E 86, 066709 (2012)CrossRef Pang, G., Bian, L., Tang, S.: Almost exact boundary condition for one-dimensional Schrödinger equations. Phys. Rev. E 86, 066709 (2012)CrossRef
11.
Zurück zum Zitat Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)MathSciNetMATH Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)MathSciNetMATH
12.
Zurück zum Zitat Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)MathSciNetCrossRefMATH Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Markowich, P., Pietra, P., Pohl, C.: Numerical approximation of quadratic observable of Schrödinger equation-type equations in the semiclassical limit. Numer. Math. 81, 595–630 (1999)MathSciNetCrossRefMATH Markowich, P., Pietra, P., Pohl, C.: Numerical approximation of quadratic observable of Schrödinger equation-type equations in the semiclassical limit. Numer. Math. 81, 595–630 (1999)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Markowich, P., Pietra, P., Pohl, C., Stimming, H.: A wigner-measure analysis of the Dufort–Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40, 1281–1310 (2002)MathSciNetCrossRefMATH Markowich, P., Pietra, P., Pohl, C., Stimming, H.: A wigner-measure analysis of the Dufort–Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40, 1281–1310 (2002)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Hagedorn, G.: Semiclassical quantum mechanics I: \(\hbar \rightarrow 0\) limit for coherent states. Commun. Math. Phys. 71, 77–93 (1980)MathSciNetCrossRef Hagedorn, G.: Semiclassical quantum mechanics I: \(\hbar \rightarrow 0\) limit for coherent states. Commun. Math. Phys. 71, 77–93 (1980)MathSciNetCrossRef
17.
Zurück zum Zitat Jin, S., Markowich, P.A., Sparber, C.: Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20, 211–289 (2011)MathSciNetCrossRefMATH Jin, S., Markowich, P.A., Sparber, C.: Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20, 211–289 (2011)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Jin, S., Wu, H., Huang, Z.: A hybrid phase-flow method for hamiltonian systems with discontinuous Hamiltonians. SIAM J. Sci. Comput. 31, 1303–1321 (2008)MathSciNetCrossRefMATH Jin, S., Wu, H., Huang, Z.: A hybrid phase-flow method for hamiltonian systems with discontinuous Hamiltonians. SIAM J. Sci. Comput. 31, 1303–1321 (2008)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Jin, S., Wu, H., Yang, X.: Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations. Commun. Math. Sci. 6, 995–1020 (2008)MathSciNetCrossRefMATH Jin, S., Wu, H., Yang, X.: Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations. Commun. Math. Sci. 6, 995–1020 (2008)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Jin, S., Wu, H., Yang, X., Huang, Z.: Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials. J. Comput. Phys. 229, 4869–4883 (2010)MathSciNetCrossRefMATH Jin, S., Wu, H., Yang, X., Huang, Z.: Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials. J. Comput. Phys. 229, 4869–4883 (2010)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Jin, S., Wu, H., Yang, X.: A numerical study of the Gaussian beam methods for one-dimensional Schrödinger–Poisson equations. J. Comput. Math. 28, 261–272 (2010)MathSciNetMATH Jin, S., Wu, H., Yang, X.: A numerical study of the Gaussian beam methods for one-dimensional Schrödinger–Poisson equations. J. Comput. Math. 28, 261–272 (2010)MathSciNetMATH
22.
Zurück zum Zitat Jin, S., Wu, H., Yang, X.: Semi-Eulerian and high order Gaussian beam methods for the Schrödinger equation in the semiclassical regime. Commun. Comput. Phys. 9, 668–687 (2011)MathSciNetCrossRefMATH Jin, S., Wu, H., Yang, X.: Semi-Eulerian and high order Gaussian beam methods for the Schrödinger equation in the semiclassical regime. Commun. Comput. Phys. 9, 668–687 (2011)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Leung, S., Qian, J., Burridge, R.: Eulerian Gaussian beams for high-frequency wave propagation. Geophysics 72, 61–76 (2007)CrossRef Leung, S., Qian, J., Burridge, R.: Eulerian Gaussian beams for high-frequency wave propagation. Geophysics 72, 61–76 (2007)CrossRef
24.
Zurück zum Zitat Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semiclassical regime. J. Comput. Phys. 228, 2951–2977 (2009)MathSciNetCrossRefMATH Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semiclassical regime. J. Comput. Phys. 228, 2951–2977 (2009)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Liu, H., Ralston, J.: Recovery of high frequency wave fields for the acoustic wave equation. Multiscale Model. Simul. 8, 428–444 (2009)MathSciNetCrossRefMATH Liu, H., Ralston, J.: Recovery of high frequency wave fields for the acoustic wave equation. Multiscale Model. Simul. 8, 428–444 (2009)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Liu, H., Ralston, J.: Recovery of high frequency wave fields from phase space based measurements. Multiscale Model. Simul. 8, 622–644 (2010)MathSciNetCrossRefMATH Liu, H., Ralston, J.: Recovery of high frequency wave fields from phase space based measurements. Multiscale Model. Simul. 8, 622–644 (2010)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Motamed, M., Runborg, O.: Taylor expansion and discretization errors in Gaussian beam superposition. Wave Motion 47, 421–439 (2010)MathSciNetCrossRefMATH Motamed, M., Runborg, O.: Taylor expansion and discretization errors in Gaussian beam superposition. Wave Motion 47, 421–439 (2010)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Qian, J., Ying, L.: Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation. J. Comput. Phys. 229, 7848–7873 (2010)MathSciNetCrossRefMATH Qian, J., Ying, L.: Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation. J. Comput. Phys. 229, 7848–7873 (2010)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Qian, J., Ying, L.: Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation. Multiscale Model. Simul. 8, 1803–1837 (2010)MathSciNetCrossRefMATH Qian, J., Ying, L.: Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation. Multiscale Model. Simul. 8, 1803–1837 (2010)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Ralston, J.: Gaussian beams and the propagation of singularities, Studies in PDEs. MAA Stud. Math. 23, 206–248 (1982) Ralston, J.: Gaussian beams and the propagation of singularities, Studies in PDEs. MAA Stud. Math. 23, 206–248 (1982)
31.
33.
34.
Zurück zum Zitat Lu, J., Yang, X.: Convergence of frozen Gaussian approximation for high frequency wave propagation. Commun. Pure Appl. Math. 65, 759–789 (2012)MathSciNetCrossRefMATH Lu, J., Yang, X.: Convergence of frozen Gaussian approximation for high frequency wave propagation. Commun. Pure Appl. Math. 65, 759–789 (2012)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Lu, J., Yang, X.: Frozen Gaussian approximation for general linear strictly hyperbolic system: formulation and Eulerian methods. Multiscale Model. Simul. 10, 451–472 (2012)MathSciNetCrossRefMATH Lu, J., Yang, X.: Frozen Gaussian approximation for general linear strictly hyperbolic system: formulation and Eulerian methods. Multiscale Model. Simul. 10, 451–472 (2012)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Herman, M., Kluk, E.: A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91, 27–34 (1984)CrossRef Herman, M., Kluk, E.: A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91, 27–34 (1984)CrossRef
37.
Zurück zum Zitat Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)MathSciNetCrossRefMATH Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Yang, X., Zhang, J.: Computation of the Schrödinger equation in the semiclassical regime on unbounded domain. SIAM J. Numer. Anal. 52, 808–831 (2014)MathSciNetCrossRefMATH Yang, X., Zhang, J.: Computation of the Schrödinger equation in the semiclassical regime on unbounded domain. SIAM J. Numer. Anal. 52, 808–831 (2014)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Kuska, J.-P.: Absorbing boundary conditions for the Schrödinger equation on finite intervals. Phys. Rev. B 46, 5000 (1992)CrossRef Kuska, J.-P.: Absorbing boundary conditions for the Schrödinger equation on finite intervals. Phys. Rev. B 46, 5000 (1992)CrossRef
40.
Zurück zum Zitat Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32, 314–358 (1979)MathSciNetCrossRefMATH Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32, 314–358 (1979)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Zhang, J., Xu, Z., Wu, X., Wang, D.: Stability analysis of local absorbing boundary conditions for general nonlinear Schrödinger equations in one and two dimensions. J. Comput. Math. 35, 1–18 (2017)MathSciNetCrossRef Zhang, J., Xu, Z., Wu, X., Wang, D.: Stability analysis of local absorbing boundary conditions for general nonlinear Schrödinger equations in one and two dimensions. J. Comput. Math. 35, 1–18 (2017)MathSciNetCrossRef
42.
43.
Zurück zum Zitat Delgodillo, R., Lu, J., Yang, X.: Frozen Gaussian approximation for high frequency wave propagation in periodic media. arXiv:1504.08051 Delgodillo, R., Lu, J., Yang, X.: Frozen Gaussian approximation for high frequency wave propagation in periodic media. arXiv:​1504.​08051
44.
Zurück zum Zitat Delgodillo, R., Lu, J., Yang, X.: Gauge-invariant frozen Gaussian approximation method for the Schrödinger equation with periodic potentials. SIAM J. Sci. Comput. 38, A2440–A2463 (2016)CrossRefMATH Delgodillo, R., Lu, J., Yang, X.: Gauge-invariant frozen Gaussian approximation method for the Schrödinger equation with periodic potentials. SIAM J. Sci. Comput. 38, A2440–A2463 (2016)CrossRefMATH
45.
Zurück zum Zitat Huang, Z., Jin, S., Markowich, P.A., Sparber, C.: A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials. SIAM J. Sci. Comput. 29, 515–538 (2007)MathSciNetCrossRefMATH Huang, Z., Jin, S., Markowich, P.A., Sparber, C.: A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials. SIAM J. Sci. Comput. 29, 515–538 (2007)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Huang, Z., Jin, S., Markowich, P.A., Sparber, C.: Numerical simulation of the nonlinear Schrödinger equation with multi-dimensional periodic potentials. Multiscale Model. Simul. 7, 539–564 (2008)MathSciNetCrossRefMATH Huang, Z., Jin, S., Markowich, P.A., Sparber, C.: Numerical simulation of the nonlinear Schrödinger equation with multi-dimensional periodic potentials. Multiscale Model. Simul. 7, 539–564 (2008)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solution. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235–261 (2000)MathSciNetCrossRefMATH Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solution. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235–261 (2000)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Bao, W., Cai, Y.: Optimal error estimate of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)MathSciNetCrossRefMATH Bao, W., Cai, Y.: Optimal error estimate of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)MathSciNetCrossRefMATH Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)MathSciNetCrossRefMATH
Metadaten
Titel
Frozen Gaussian Approximation-Based Artificial Boundary Conditions for One-Dimensional Nonlinear Schrödinger Equation in the Semiclassical Regime
verfasst von
Ricardo Delgadillo
Xu Yang
Jiwei Zhang
Publikationsdatum
25.11.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0606-5

Weitere Artikel der Ausgabe 3/2018

Journal of Scientific Computing 3/2018 Zur Ausgabe